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Performance Metricsfor Intelligent Systems

John M. Evans and ElenaR. Messina
Intelligent Systems Division
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ABSTRACT

Research into intelligent systems and intelligent control is
burgeoning. However, there is no consensus on how to define or
measure an intelligent system.  This lack of rigor hinders the
ability to measure progress in the field and to compare different
systems capabilities. We discuss some of the challenges and
issues in defining performance metrics for intelligent systems and
issue a call to action to participants in the Performance Metrics for
Intelligent Systems Workshop to define practical metrics that will
advance the state of the art and practice.
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1. INTRODUCTION

Intelligent systems are increasingly being
identified as solutions to many advanced
applications in manufacturing, defense, and other
domains. Industry workshops [4] and roadmaps
[3] specificaly call for intelligent control or
intelligent systems to address needs such as

Adaptive,  reconfigurable
equipment and processes

manufacturing

Self-optimizing, science-based control  of
manufacturing unit processes

“First part correct,” that is, the ability to
design and manufacture a product correctly,
the first time and every time

Self-diagnosing and self-maintaining systems
Tool wear and breakage monitoring

Government agencies are basing major programs
on intelligent capabilities, for example,

The Army Experimental Unmanned Ground
Vehicle Systems (Demo 111)

Defense Advanced Research Projects Agency
(DARPA)/Army Future Combat Systems

DARPA Mobile Autonomous Robot Software
DARPA Software for Distributed Robotics
DARPA Tactical Mobile Robots

Nationa Aeronautics and Space
Administration (NASA) spacecraft and rovers

Department of Energy (DOE) waste
remediation robot systems

Department of  Transportation  (DOT)
Intelligent Vehicle Initiative

In addition to the examples above, there are
myriad other efforts in academia, industry, and
government labs of work referred to as
“intelligent systems.”  Despite the common use
of “intelligent system” and “intelligent control,”
there is no uniform definition for either term.
Generally, they are characterized by having one or
more of the following traits [1]:

Adaptive

Capable of learning

“Does the right thing” or “acts appropriately”

Non-linear

Autonomous symbol interpretation

Goal-oriented

Knowledge-based

These terms are ambiguous and quadlitative.
The Intelligent Systems Division of the National
Institute of Standards and Technology has



launched an initiative to better define what an
intelligent system is and how to measure its
performance. The mission of the Intelligent
Systems Division, one of five divisions in the
Manufacturing Engineering Laboratory, is “to
develop the measurements and standards
infrastructure needed for the application of
intelligent systems by manufacturing industries
and government agencies.”

We are working with various industry groups
and government agencies to tackle the issue of
intelligent system  performance. The
Performance Metrics for Intelligent Systems
Workshop is a foundational step, which brings
together a multi-disciplinary community to help
define the highest priority areas to concentrate on,
having the highest payoff.

2. THE CHALLENGE OF DEFINING AND
MEASURING MACHINE INTELLIGENCE

Researchers have been pursuing forms of
machine intelligence for several decades. There
have been many areas of focus, such as natural
language understanding, expert systems to aid
diagnoses, and decision-making tools for financial
systems. Closer to our domain of interest, much
effort has been focused on defining intelligent
control as a discipline, but even so, there are no

INTELLIGENT
CONTROL

CONTROL
THEORY

OPERATIONS
RESEARCH

INTELLIGENCE

Figure 1: Intelligent Control as of 1985

quantitative measures.

Beginning with the efforts of Fu [1] and
Saridis [3] in the seventies, there have been
numerous conferences and workshops aimed at
the topic of intelligent control. Nevertheless,
the field remains fragmented due to its
multidisciplinary nature. As noted in the first
Symposium on Intelligent Control in 1985,
intelligent control was proclaimed a theoretical
domain, in which control theory, Al, and
operations research intersected (Fig. 1 from [6]).

The definition of an intelligent system may be
considered broader than that of intelligent control.
As a “system,” there may be more constituent
parts, such as perception, world modeling, or
value judgement. Yet more disciplines are
brought into the picture.  Examples of these
include data representation, image processing, and
decision theory.

Given the multi-disciplinary nature of the
systems we are concerned with, it is clear that
defining the scope and performance of these
systems is a challenge. Terminology is one of
the first hurdles that must be overcome. Different
disciplines ascribe different definitions to the
same words. For example, “complexity” may
refer to non-linear systems in one field and to
computational resources needed in another.

It is very difficult, if not impossible to
currently evaluate research into intelligent
systems. Since there are no quantitative metrics,
intercomparisons of results are not generaly
possible.  Sponsors are not able to adequately
judge whether research results meet their
requirements. Potential users have no impartial
evaluation reports, a la “Consumer Reports,” of
intelligent systems, techniques, and tools. In
genera, the lack of metrics slows progress.
Thereisaproliferation of data specific algorithms
and task-specific solutions.

One of the biggest costs paid is the duplication
of effort. New programs may be unable to have a
firm definition of past accomplishments, hence
they may fund work that repeats previous



research. Research teams cannot leverage prior
existing work from other institutions and tend to
have to reinvent the wheel by building al of their
system’'s components from scratch. They are
burdened with having to spend effort in building
components that are not part of their research
focus, instead of being able to leverage existing
“best of class’ solutions and focussing on their
interests.

Another negative impact, from the sponsor's
viewpoint, is the lack of predictive ability in
assessing new applications. Without objective
performance evaluation metrics and an
understanding of capabilities and limitations, it is
difficult or impossible to assess clams of
competing approaches in formulating new
projects and programs. This leads to
inefficiencies and failures that could be avoided if
we had the measurement tools that we need.

3. ISSUESIN MEASURING PERFORMANCE

Numerous questions must be answered when
considering how to define the performance of
these intelligent systems. We will present a few
guestions. Many more will arise as we delve into
the matter more closely.

Should we measure only the external behavior
of a system? Is that the only aspect that can
feasibly be measured? Or, is there value in
decomposing a system into components and
measuring their individual capabilities?
Examples would be measuring the path
planning agorithms in isolation from the
perception and other control subsystems.

How generic does the measure of a system’s
intelligence have to be? Should we strive for
genera intelligence metrics that are domain-
independent or are we better off focussing on
application and domain-specific metrics? Are
domain-independent metrics even
meaningful ?

How do we factor in “body intelligence,” the
mechanical capabilities of a system as
opposed to the control capabilities, when
assessing the performance of a system? If we
have a mobile robot, some of its abilities to
achieve its stated goal (e.g., traverse a rubble
pile to find survivors) can be attributed to its
mechanical properties rather than its software
intelligence.

Are testbeds a viable measure of performance,
or do they invite “gaming,” that is, encourage
solutions that are tailored to performing well
in the testbed? If we don’t have testbeds, how
can we achieve reproducible measures of
performance?

4. |NITIAL OBSERVATIONS

One of the complicating factors in discussing
intelligent systems is the use of the word
“intelligence.” It is freighted with significance
and analogies to human or biological intelligence
naturaly arise. The quest for standard, uniform
measures of intelligence in biological systems
remains a subject of controversy. Therefore, we
would advocate avoiding the temptation to spend
too much time striving for performance measures
that are based on human or higher level biological
systems.

Observing that we are dealing with multi-
disciplinary technologies and multiple application
domains, we should expect that no single, unique
measure of performance is feasible. Therefore,
no single overarching and generic intelligence test
will suffice.  We need to strive for the right
granularity of metrics.

We must be prepared to attack the problem on
multiple fronts. It probably won't suffice to have
just a theoretical investigation or an experimental
one. Research must proceed on the theory as
well as on gathering experimental data.

One of the key attributes of intelligent systems
is its multi-disciplinarity. This poses a challenge,
but also an opportunity. We can come together
from a variety of disciplines and form a new



community in which we share our expertise. We
must have dialog and information exchange
amongst ourselves in order to synthesize the best
results from the different fields that contribute
towards intelligent systems research.

That is the purpose of this workshop and the
reason for the diversity of the presentations that
you will hear.

5. CALL TOACTION

The challenge is thus to define performance
measures for new and evolving intelligent systems
technologies that can greatly improve industrial
productivity and advance government mission
objectives.  We must work together to build a
technical foundation for measuring performance.
This includes agreeing on the domains to
investigate and a common set of terminology.
We must develop theoretical foundations,
methodologies, and supporting infrastructure for
achieving our goals. Ultimately, measures must
be developed that are practical, unambiguous,
easy to use and widely deployable. We must
simultaneously focus on attainable goals and
strategies for both near-term and long-term
measures of performance, as our understanding of
them and the capabilities of the systems
themselves evolve.  Researchers, industry, and
government will benefit from practical solutions
they can readily apply, not from philosophical
ones.
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The Search for Metrics of Intelligence — A Critical View

Lotfi A. Zadeh”

Few issues in Al generate as much heated debate as those which in one way or another
relate to the questions: “What is intelligence?”; “Can machine think?”; and “How can intelligence
be measured?” One cannot but be greatly impressed by the incisive comments made by members
ol the Intelligence Advisory Board. And yet, most of the basic issues relating to intefligence
remain unresolved -- as they were half a century ago -- when I moderated, at Columbia Univer-
sity, what I believe to have been the first debate on “Can machines think?” The debate involved
Claude Shannon, E.C. Berkeley, the author of Giant Brains, and Professor Francis J. Murray -- a
prominent mathematician who as a consultant to IBM was active in the conception and design of

computer systems.

At that time -- the dawn of the computer age -- there was a great deal of interest in the abil- .
ity or inability of computers to think as humans do. To a much greater degree than is the case now,
there were exaggerated expectations. In an article of mine entitled “Thinking machines -- a new
field in electrical engineering,” which appeared in the January, 1950, issue of the Columbia Hngi-
neering Quarterly (Zadeh 1950), 1 surveyed some of the articles which were published in the pop-
ular press at that time. The headline of one of the articles read “Electric brain capable of

translating foreign languages is being built.”” The problem of machine translation seemed to be

*  Professor in the Graduate School and Director, Berkeley Initiative in Soft Computing (BISC), Computer
Science Division and the Electronics Research Laboratory, Department of EECS, University of
California, Berkeley, CA 94720-1776; Telephone: 510-642-4959: Fax: 510-642-1712; E-Mail:
zadeh(@cs.berkeley.cdu; Webpage: hitp://www.cs.berkeley.edu/People/Faculty/Homepages/zadeh.hunl.
Rescarch supported in part by ONR Grant FDN0O14991035, NASA Grant NAC2-1177, ONR {rant
NOO014-96-1-0356, ARO Grant DAAH 04:961-0341 and the BISC Program of UC Bedewley.
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close 1o solution. Today, we know betler. In 997, Martin Kay, one of the leading contributors to
machine transiation had this to say: *Machine translation gave ihe initial inspiration {0 computa-
tional linguists and conlinues o motivate much ol their work. That is surely fair enough since the
problem 1s clearly computational and obviously linguistic. But forty years of money and effort has
brought us hardly any claser to the answer. The world continues 1o pour money down the same
rathole with little discernible progress, with or without the Hnguists. The German government is

giving it a new Lwist: “Notice how we never seem to get anywhere on machine transtation?”

The debates which raged in the past were largely ol academic interest because there were
few, if any, systems that could be assessed as having a high level of intelligence, Al this juncture,
this 18 no longer the case. Today, we can point with pride to Deep Blue, which beat Gary Kaspa-
rov. More importantly, we have a wide variety of systems which can perform highly non-trivial
tasks involving recognition, decision and control. We are, in fact, withessing the beginning of

what may be described withoul exaggeration as the Intelligent Systems Revolution.

When Al was christened in 1956, it became the standard bearer of efforts to devise and
build machines that could exhibit human-like intelligence in performing various tasks. For some
time therealler, the Al scene was one of unbridled enthusiasm and, as we now realize, unrealistic
expectations. In judging that period, however, what should be remembered is that -- as Jules Verne
astulely observed at the turn of the century -- scientific progress is driven by exaggerated expecta-

tions.

It took forty vears for a computer to challenge and beat a chess champion. Why did it take
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so long to achieve some of Al’s objectives? In the first place, the basic difficulty of approximating
to what humans can do so easily without any measurements and any computattons, ¢.g., under-
stand speech, read handwriting, summarize a story and park a car, was greatly underestimated.
More important, however, is the fact that the needed technologies and methodologies were not in
place. In particular, we did not have the highly capable sensors and powerful computers which we
have today, and we did not employ such recently developed methodologies as neurocomputing,

evolutionary computing, probabilistic computing, machine learning and fuzzy logic.

In the past, what were called intelligent systems were for the most part symbol-manipula-
tion oriented, e.g., machine translation systems, text understanding systems and game playing
systems, among others. Today, what we see is the rapidly growing visibility of systems which are
sensor-based and have embedded intelligence, e.g., smart washing machines, smart air condition-
ers, smart rice cookers and smart automobile transmissions, The counterpart of the concept of IQ
in such systems is what might be called Machine 1Q, or simply MIQ (Zadch 1994). However,
what is important to recognize is that MIQ -- as a metric of machine intelligence -~ ts product-spe-
cific and does not invelve the same dimensions as human IQ. Furthermore, MIQ) 1s relative. Thus,
the MIQ of, say, a camera made in 1990 would be a measure of its intelligence relative to cameras

made during the same period, and would be much lower than the MIQ) of cameras made today.

Viewed in this perspective, the focus of activity in applications of machine intelligence is
shifting from writing computer programs that can prove difficult theorems, understand text, pro-
vide expert advice and beat a chess champion, to more mundane tasks devolving on the concep-

tion, design and construction of products and systems that have a high MIQ, making them
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reliable, capable, affordable and user-friendly. Among recent examples of systems of this kind are
programs which can detect the presence of known or new viruses in computer programs; checkout
scanners which can identify fruit and vegetables through the use of scent sensors; car navigation
systems which can guide a driver to a desired destination; password authentication systems
employing biometric typing information; ATM eyeprint machines for identity verification; and
molecular breath analyzers which are capable of diagnosing lung cancer, stomach ulcers and other

diseases.

If MIQ is accepted as a metric of machine intelligence, then a particular machine may be
said 1o be highly intelligent if has a high MIQ. But this beg the question of how the MIQ of a class
of machmes could be measured. Comments made by members of the Intelligent Advisory Board
provide some guidelines. But a thesis that I should like to put on the table is that the existing con-
ceptual framework of Al -- which is based on first-order two-valued logic -- is incapabte of pro-

viding a suitable foundation for constructing realistic metrics of IQ and MIQ.

The problem with predicate-logic-based Al is that it embraces the principle of the
excluded middle, which asserts that every proposition is either true or false, with no shades of
gray allowed. But in the real world, as perceived by humans, it is partiality rather than categoricity
that is the norm. Thus, we generally deal with partial knowledge, partial order, partial truth, partial
certainty, partial causality and partial understanding. The essentiality of the role of pattiality in
human cogmtion bas been slow in gaining acceptance in Al Without employing the notion of par-

tiality, realistic metrics of IQ and MIQ cannot be constructed.
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Another concepl that plays a basic role in human cognition is that of granularity, and,
more particularly, that of f-granularity. In essence, f-granularity is a concomitant of the bounded
ability ol sensory orgauns and, ultimately, the brain, to resolve detail and store information. What
this means is that (a) the boundaries of perceived classes are not sharply defined; and (b) values of
perceived attributes are granutated, with a granule being a clump of values drawn together by
indistinguishability, similarity, proximity or functionality. For example, the granules o' Age might
be: very young, young, middle-aged, old and very old. Similarly, the granules of face may be:
nose, cheeks, chin, lorehead, etc. F-granularity underlies the concept of a linguistic variable in

fuzzy logic.

The concepts of partialily and f-granularity play key roles in what may be called Precisi-
ated Natural Language (PNL). What 1 should like to suggest is that PNL could play a central role
in formulation of metrics ol tntelligence. How these could be done is a complex task that will
require a major effort to yield concrete results. In what follows, 1 will confine myself to sketching

the basics of PNL and pointing to its use as a concept delinition language.

Natural languages are expressive but imprecise. Mathematical languages are inexpressive
but precise. Basically, PNL draws on a natural language (NL) and a mathemaltical language (ML)
to provide a language which is precise and yet far more expressive than conventional meaning-

representation and definition Janguages based on predicate logic.

In essence, PNL s a subset of NL which consists of propositions which are precisiable

through translation into a precisiation language GCL (Generalized Constraint Language). An
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example of a precisiable proposition is: It is very unlikely that there will be a significant increase
in the price of oil in the near future. The point of departure in PNL is the assumption that the
meaning of a precisiable proposition, p, is expressible as a generalized constraint on a variable.

Usually, the constrained variable and the constraining relation are implicit rather than explicit in

p.

A concept which has a position of centrality in GCL is that of a generalized constraint
expressed as X ist R, where X is the constrained variable, R is the constraining relation, and isr
(pronounced as ezar) is a variable copula in which r is a discrete-valued indexing variable whose
value defines the way in which R constrains X. Among the principal types of constraints are the
following: possibilistic constraint, =blank, with R playing the role of the possibility distribution
ol X; veristic constraint, r=v, in which case R is the verity (truth) distribution of X; probabilistic
constraint, r=p, in which case X is a random variable and R is its probability distribution; r=rs, in
which case X is a fuzzy-set-valued random variable (fuzzy random set) and R is its fuzzy-set-val-
ued probability distribution; and fuzzy-graph constraint, r={g, in which case X is a (uzzy-set-val-

ved variable and R is its fuzzy-set-valued possibility distribution.

With these constraints serving as basic building blocks, which are analogous to terminal
symbols in a formal language, more complex (composite) constraints may be constructed through
the use ol a grammar. Simple examples of composite constraints are: X isr R and X iss S; and, if X
tsr R then Y iss S, or, equivalently, Y iss S if X isr R. The collection of composite constraints
forms the Generalized Constraint Language (GCL). The semantics of GCL is defined by the rules

that govern combination and propagation of generalized constraints. These rules coincide with the
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rules of inference in fuzzy logic (FL).

The capability of PNL to serve as a powerful definition language depends in large measure
on the fact that, by construction, GCL is maximally expressive. The conclusion that emerges from
this fact is that metrics of intelligence, if they can be defined, will necessarily have to be defned in
terms of PNL and have an algorithmic structure (Zadeh 1976). What this implies is that realistic
metrization of intelligence is not possible within the conceptual structure of existing methods of
definition and measurement. We cannot expect a concept as complex as that of intelligence to be

definable in traditional terms.
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M easur e of System Intelligence: An Engineering Per spective
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ABSTRACT

System intelligence can be measured experimentally either through
benchmark tests, or theoretically through the formal analysis of
system software architecture and hardware configurations. The latter
approach is pursued here, since it serves directly as the criteria for
designing and engineering intelligent systems in a directed manner,
rather than by trial and error. To this end, a structure of problem
solving and learning of machine is proposed. Once a machine is
represented with the structure, the intelligence can be measured via
transforming it into an equivaent linguistic structure. A simple
exampleisalso provided.

KEYWORDS: measure of system intelligence, measure by
linguistic equivalence, machine description language

1. INTRODUCTION

The intelligence of systems is emergent when the systems are
able to accomplish loosely defined but complex tasks in an
unstructured and uncertain environment. The intelligence can
be manifested by the capability of systems to autonomously
synthesize goal-oriented behaviors in adaption errors, faults,
and unexpected events through the real-time connection of
sensing and action. However, we still do not have a
satisfactory quantitative way to characterize the “intelligence’
of systems. There are many kinds of intelligent systems in
various fields. The adjective ‘intelligent’ is quite widely used
to describe their systems devel oped by many system engineers
and companies. One developer may say that his/her system is
more intelligent than the others, but it can happen that another
claims the same thing. In this case, who can say one is more
intelligent than the others? One must have a kind of measure
of intelligence for systems or machines in order to answer this
question. In this sense, it is worthwhile to provide a measure
on how intelligent amachineis.

Many intelligent system techniques have been developed
and studied so far, but only a few studies have been done on
‘how to measure intelligence of systems.” J. S. Albus
introduced the theory of intelligence in an engineering
viewpoint [1]. G. Zamesinitiated an effort for defining such an
index as approximate a measure of the “task” and
“satisfactory” performances an “intelligent controller” could

achieve versus those that a classical controller could achieve
[2]. The challenge involves characterization of performancein
unknown environments, learning, controller and task
complexity, and associated tradeoffs. E. C. Chalfant and S.
Lee suggested an engineering perspective [3]. They thought
that one can represent al tasks of a machine in the form of
graphs and find an equivalent language for the graphs. Since a
language consists of grammar and vocabulary, the descriptive
power of a machine can be represented by the grammar and
the vocabulary. Bien, et al. [4][5] proposed a couple of
methods to measure how much a machine is intelligent; they
considered the questions from the ontological (functional) and
phenomenological (behavioral) definitions on intelligent
machine.

Establishing the measure of system intelligence should
not only be able to turn the intelligent system into a formal
academic discipline but also provide a means of designing
better and more powerful intelligent systems in practice. The
measure of intelligence of a system or, more precisely, a
constructed system with autonomy should take into
consideration various aspects of intelligence ranging from
perception, understanding, and problem solving to
generalization and learning from experience. A. Meystel
proposed a vector of system intelligence as a collection of
features representing intelligent functions of a system. The list
of such features can be very comprehensive indeed. However,
formulating the measure of system intelligence based on such
a vector may not necessarily represent the essence of system
intelligence. The functional features describing the aspect of
intelligent behaviors may obscure the existing internal engine
by which intelligent behaviors are generated.

To begin with, the following questions are raised for
answer prior to the definition of the metric of system
intelligence:

(a) Should the intelligence measure be goal-dependent or
goal-independent?

(b) Should the intelligence measure be time-varying or
time-invariant?

(c) Should the intelligence measure be
dependent or resource-independent?

resource-

For (a), it raises a question whether there exists a
universal measure of system intelligence such that the
intelligence of systems can be compared independently of the



given goas. A goa-independent measure may be more
difficult to define, if not impossible, and more controversial. A
goal-dependent measure, however abstract the goal may be,
can allow clear comparison among the systems of different
architecture but with the same goal. For instance, for the latter
case, intelligence can be represented as how efficiently, and
how optimally a system reaches the given goal by itself, i.e.,
the power of automatically solving problems defined as the
discrepancy between the goal and the current state.

For (b), it represents whether the intelligence measure of a
system should solely be based on problem-solving capability
attimet or it should contain the potential increase of problem-
solving capability in the future based on learning. Both are
necessary. But, it is better to define the two separately before
integrating them together in one measure.

For (c), it raises an issue whether the resources required
for building systems and system operation should play a role
for defining the measure of intelligence. As mentioned above,
the efficiency in problem solving should be included in the
measure: for instance, the time and energy required to reach a
solution should be taken into consideration together with the
optimality of the solution. But, it is not clear whether we
should or should not include the cost of building a system.

Section 2 provides definitions of engineering metric of
system intelligence based on the above three questions. In
Section 3, machine intelligence structure is proposed, and an
equivalent linguistic structure follows in Section 4. Section 5
shows an example with a robotic arm. Finally, Section 6
concludes the paper.

2. DEFINITION OF ENGINEERING METRIC
OF SYSTEM INTELLIGENCE

System intelligence can be measured under considering
various points of views described in the previous section. An
approach in engineering perspectiveis pursued here with goal -
oriented, time-dependent, and resource-dependent definition
of engineering metric of system intelligence. We define
machine intelligence quotient (MIQ) in the following way.

The measure of system intelligence as problem-solving
capability at timet for the given goal set g, denoted by MIQ(g,
t), is defined by the capability of solving problems toward the
given goal set where the capability can be measured by the
scope of constraints (environmental variations), together with
the time and resources required, under which the system
succeeds in reaching the given goals.

The measure of self-improvement of system intelligence
as learning capability with respect to time t, denoted by
dMIQ(g, t), can be defined by the rate of increasing M1Q(g, t)
with respect to time based on learning from experience.
Capability of learning in the time duration of (t;, t2) is
represented by the integration of dMIQ(g, t) betweent; and t,.

Now, the total measure of system intelligence, tMIQ, is
defined by

UV”Q=m?X[M|Q(9,to)+tc‘ﬁM|Q(9,t)dt]- D

to

Let tmax be the time when the maximum of tMIQ is
obtained. The learning rate is then defined by

max ;‘)dMIQ(g,t)dt/max.
L

Note that the universal measure of system intelligence,
uMIQ, may be defined in terms of integration of MIQ with
respect to goal, i.e.,

t
IMIQ= & ma(MIQ(g,to)+ MIQ(g.t)cldg  (2)
1 G

g to

where Gisthe set of al goals.

As mentioned above, resources required for the machine
is combined into the machine intelligence, M1Q to resource
ratio, rMIQ, can be represented by

rMIQ =tMIQ/resources. (3)

3. MACHINE INTELLIGENCE

As described in the previous section, machine intelligence can
be measured once MIQ(g, t) and dMIQ(g, t) are defined. We
now formulate the way of defining two quantities, MIQ
(problem-solving capability) and dMIQ (rate of increasing
MIQ based on learning capability).

The first step of problem solving is to understand the
situation and define what are the problems to solve. This
requires identifying the gap between the goal and current
states as well as recognizing the constraints and opportunities
imposed by the environment. Then follows the planning or
decision-making to reduce the gap under constraints. The first
step requires perception and understanding, whereas the
second step requires action and planning. Perception and
action can be represented as logical sensor and actuator
systems, respectively, in a form of hierarchical graphs of
declarative knowledge components. Understanding can be
represented as the connection of what have been perceived to
system internal knowledge. Planning can be represented as the
projection of what have been understood to the logical
actuator system. The mechanism of these connections can be
rule-based. The overall structure of problem solving
mechanism is represented in Figure 1 with solid-line
connections.

Regarding the learning capability, a higher level of
consciousness that monitors these activities of understanding
and planning may exist in the form of thinking (a self-driven
function that monitors understanding and planning in the form



of questioning, virtual manipulation). In case that the machine
cannot understand an obtained data from logical sensors by
perception, the consciousness’emotion may adjust the
knowledge to allow the obtained data for understanding, i.e.,
identifying the gap between the goal and current states as well
as recognizing the constraints and opportunities imposed by
the environment. In addition, when an action already taken is
decided to be further improved, the consciousness/emotion
may fix its knowledge to give a better plan later on. The
structure of learning mechanism is also shown in Figure 1
with dotted-line connection.

! Consciousness

1 /Emotion
1

L
=TT=-r-—---

,
Logical
actuators

—— : Problem solving structure

Figurel. Structure of Machine Intelligence

The logical sensors and actuators as well as knowledge
and constraint can be represented by an equivalent linguistic
form. The same is true for representing the connection and
projection associated with understanding and planning. If the
functions of a system embedded in its hardware and software
can be represented as a linguistic equivalent, based on the
above observation, the MIQ and dMIQ of the system may be
defined in the equivalent linguistic space. Thus, for a given
machine to measure its intelligence, transforming the machine
itself into this structure of problem solving and learning is first
conducted, and then transforming it into the equivalent
linguistic structure is to be done, which is discussed in the
next section.

4. MEASURE BY LINGUISTIC EQUIVALENCE

Transforming system architecture into an equivalent formal
language structure, a consistent measure of machine
intelligence associated with the corresponding formal
language can be obtained.

Any generic language used to build models representing
diverse architectures must contain mechanisms to implement
the features of all these architectures. For example, the parallel
structure of the subsumption model requires parallelism in the
language. At the other extreme, the functionality of a
centralized planner must also be representable. If the structure
of the model differs, we must be prepared to clearly determine
equivalent operation.

4.1 The Machine Description Language

The basic unit of the Machine Description Language (MDL) is
a behavior. The behavior nit is analogous to a sentence or
statement constructed according to grammatical rules. There
statements are conglomerated to form a meaningful system.
The paper defines the grammatical rules of syntax of the
Machine Description Language. Generating the semantics of
an entire system is analogous to writing a program in a given
system.

An MDL model has a hierarchical layered architecture
composed of a number of various behaviors, some simple, and
some complex. The simplest possible behavior is based on
direct triggering by a single binary sensor which elicits a
simple actuator response. For example, an on/off contact
switch can trigger a behavior called “bump” which causes a
short reverse movement combined with aturn.

Behavior modules are collected in groups which
implement a complete autonomous task, such as obstacle
detection. The collection of behaviors is called a wrapped
behavior. The linguistic analogy is a paragraph of subroutine
which encapsul ates a single topic or function.

The composite wrapped behavior collectively implements
some useful autonomous task. For example, a group of bump
behaviors based on different contact sensors can be wrapped
to form an obstacle rerouting wrapped behavior based on
direct contact. If ultrasonic range detectors are added, new
strands can be added to the composite object rerouting
behavior, and the improved behavior them before bumping
them. The old bump behaviors are kept as backups.

4.2 Analytical Measures with MDL

The performance of the system described here can be
measured using traditional back box empirical techniques. For
example, we can time its performance in executing a
prescribed task. Alternatively, structural (linguistic) analyses
of the system can be used to determine theoretical bounds on
performance independent of implementational efficiency.

Structural  analysis begins with identification of
measurable quantities and their effects on performance. Many
structural features can be measured; each contributes to the
emergent intelligence of the completed system in a different
way.

4.2.1 Behavior Attributes

We first consider measurable attributes of a behavior. Some of
the measurable structural features are:

Strand Count and Strand Segment Count: A behavior has some
number of strands (i.e., sensor to actuator information path)
associated with it. Strands are regarded as instantaneous
communication links for the purpose of measurement. The
information packet propagation time between nodes, trigger,



and taps is zero. The number and thickness of strands in a
single behavior provides a measure of the resolution of
sensory information, trigger situation discernability, and the
dexterity or controllability of the actuator system. More
fundamentally, strand segment count and thickness together
measure the information transport capacity of the behavior.

Node Count: Node count captures the complexity of the sensor
and actuator trees of a behavior. The node count istaken asthe
sum of nodes and taps for both sensor and actuator trees.

Trigger Propagation Time: Each trigger has three measurable
attributes indicating the dimensionality of the input
(parameters of the sensed situation), the dimensionality of the
output (parameters of the desired response, based on the
sensed situation) and the propagation time of the information,
i.e., the delay between a sensed situation and the resultant
response.

Node Propagation Time: The delay an information packet
encounters between the time it enters a tap node, fusion node,
or arbitration node and the time it (or the effects of achange in
the information) exits the node, is termed node propagation
time. It represents the processing time required to fuse
information, to arbitrate competing controls, or to extract or
combine information.

Strand Propagation time: The strand propagation time id the
time for an information packet to travel from the sensor at the
beginning of the strand to the actuator at the end of the strand.

Behavior Response Time: The response time of a behavior is
the sum of all information propagation timers along the
longest path between raw sensor input and raw actuator
output. The path may include nodes from other behaviors but
will include only one trigger propagation time. This differ
from the propagation time of the longest strand in that the
strand propagation time is measured from tap to tap, whereas
the behavior response time is measured from raw sensor input
to raw actuator output. Behavior response time is computed
as:

B=max(da; +t) (4

where

B : behavior responsetime

a; : node propagation time for node i

t :trigger propagation time
Behavior response time can a so be measured empiricaly, as
long as the response can be isolated from the response of all
other behaviors.
4.2.2 System Attributes
Next we consider attributes of the combined system:

Trigger of Behavior Count: The number of separate triggers
(which is equivalent to the number of behavior modules)

indicates the number of separate situations and corresponding
responses, which the system can elicit, based on its sensory
information. The total number of triggers in the entire system
is and indication of complexity of the system and
sophistication of response (assuming a well-designed system).

Strand Distribution: Strands which rely on many lower level
strands provide more abstract, goal-directed, and strategic
stimulus-response relationships, whereas the lower level
strands provide greater reactivity and quicker response. The
distribution of the strands between these extremes indicates
the tendency for the system to generate behavior based on
reflexes or impulses vs. goal-seeking behavior. One measure
of this characteristic is the distribution of behavior
propagation times. Standard statistical measures such as mean
and median behavior propagation times, standard deviation,
minimum and maximum propagation, describe the
distribution. A median propagation time biased toward the
minimum indicates a more quickly responsive and reflexive
system whereas a bias toward the maximum indicated a
deliberative system.

Layering Depth: Another measure of deliberativeness is the
layering depth. The layering depth can be measured as the
number of trees belonging to different behaviors which an
information packet must traverse to reach the raw motors from
the trigger. Because each group of wrapped behaviors
comprises an autonomous set of behaviors, the layering depth
or maximum depth of wrappers indicated the sophistication of
autonomy. A system, which is more deeply wrapped, may
indicate that it can perform more complex tasks autonomously.
Each behavior added to a wrapped behavior indicates that
some environmental situation can arise which s not handled
optimally by the wrapped behavior by itself. If a wrapped
behavior sitself wrapped along with new behaviors, the newly
wrapped set handles all the environmental stimuli of the
original wrapper plus all the situations detected by the new
behviors.

MIQ: The MIQ (Machine Intelligence Quotient) is then
defined as the product of the complexity of tasks the system
can handle and the performance in task execution. This
measure embodies the tradeoff between reflexivity (speed) and
deliberativity (complexity). Task complexity is dependent both
on the complexity and quantity of the tree structures. The
complexity of tasks can be measured using the system
attributes listed above, namely, trigger count, strand
distribution, layering depth, strand count, and node count. We
combine these as aweighted sum:

T=wyg+wgd +w | +wgs +wk (5)
where
T : Task complexity ability
g : Trigger count

d : Average strand propagation time overall machine



| : Layering depth
s : Total strand count in machine
k : Total node count in machine

W,

by Wa » W, Ws W Respective weights

Performance in task execution is derived from the collective
performance of behaviors. This can be computed as the
weighted sum of behavior response time and inverse average
strand propagation time (since speed increase as strand length
decreases):

E=wgB+w,/d (6)

MIQ isthen
MIQ=T:E (7)

Resource: Machine “resource” is a measure of implementation

reguirements based on the architectural design of the machine.

The resource is defined as the product of cost and volume. We
compute the resource based on the number of processors and

communication links required to implement the system
directly in a parallel architecture. Processors are expensive
while communication links are cheap. However,

communication links can become numerous and occupy a
large part of the volume of a machine. These costs and

volumes are likely to change with new technology. The cost of

the system is the sum of the costs of the processors (trigger,

nodes, and taps) required. We assume one simple processor
per trigger, node, or tap. We denote this as

C=Cyg+C,p 8
where
C : cost of machine
p : node count

Cqy,C, : cost of trigger and node processors

The volume of the system is computed the same way:

V =Yg +Vp ©

Then resourceis
R=CV (10)

and therMIQ is
rMIQ = MIQ/R (11)

5. ENGINEERING CASE STUDY

A simple grasp controller based on the subsumption style of
robot control uses a gripper beam and finger contacts as
sensors as shown in Figure 2.

— ||
robot
CD/ 5 — body

gripper contact
beam switch

Figure 2. A Simple Robot Arm

O stop closing gripper,
retract arm
close grippers

Figure 3. Subsumption Network

switch contact

beam broken . gripper closure

. arm extension

Figure 3 illustrates the simple subsumption network
which generates the behavior of the robot. The extend arm
behavior is always extends the arm (we ignore the condition of
afully extended arm). As soon as the gripper beam is broken,
the sensor causes the “close grippers” behavior to trigger. The
white motor node simultaneously inhibits the arm from
extending with an inhibition node and activates the gripper
closure actuator, causing the gripper to begin closing. (The
gray nodes are taps — in this example they are motor taps or
arbitrators.) When the grippers contact the object, the contact
switch is closed, causing the “stop closing gripper, retract
arm’ behavior to trigger. The white node on the output of this
behavior is a sequential node — first the gripper closure motor
strand is inhibited, causing the gripper to first stop squeezing.
Finally, the behavior subsumes the output of the “extend arnt
behavior using a subsumption node, causing the arm to retract.

The MIQ and dMIQ of this system is easy to compute. All
weights are set to one to simplify the example. There are three
behaviors. The “extend arni’ behavior is a trigger and a raw
motor node (the tap nodes belong to the /”close gripper” and
“stop gripper...” behaviors). The behavior response time for
“extend arni’ istherefore 1 + 1 = 2. There is one strand in this
behavior. The “close grippers” behavior has one raw sensor
node, one motor node tree node, and either one raw motor
node or one motor tap; both of the two strands are the same
length, so we may use either. The response timeis3 + 1 = 4.
The“stop closing...” behavior similarly has aresponse time of
4 and a strand count of two. The mean behavior response or
propagation timeis (2 + 4 + 4) / 3, or 3.333. Layering depth is
two, and system strand count is 5. Average strand propagation
time over the entire systemis (3+3+3+ 3+ 1)/ 5, or 2.6.
There are nine nodes and nine strand segments in the entire
system.

Based on these numbers, task complexity ability is3 + 2.6
+ 2+ 5+ 9=21.6. Remember, this number means little except
as a comparative measure. Performance is 3.333 + 0.385 =
3.718. MIQ is then roughly 21.6 + 3.7 = 25.3. If we assume



costs and volume of one, then cost and volume are both 9 + 9

= 18. Resource is (18)(18) = 324, and the rMIQ is 21.6/324 =
0.0667

6. CONCLUSION

We have presented three important issues, which should be
considered when measuring machine intelligence, and
introduced the structure of machine intelligence, which shows
the internal mechanism of machine taking into account the
three issues. Any machine can be represented by the proposed
structure and the structure can be transformed into an
equivalent linguistic structure so that one may define the
metric of the machine intelligence in an analytical way.

In this paper, an equivalent linguistic structure has been
proposed. It needs to be further developed to present linguistic
structure of machine intelligence for both MI1Q and dMIQ with
respect to goals and time.

The formulation on MIQ, dMIQ, and rMIQ in Section 2
will be a good guide for defining machine intelligence since
its clearness in the sense of goal-dependency, time-
varyingness, and resource-dependency.
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ABSTRACT

There are now so many architectures for intelligent systems:
deliberative planning vs. reactive acting, behavioral subsuming
vs. hierarchical structuring, machinelearning vs. logic reasoning,
and symbolic representation vs. procedural knowledge. The
arguments from al schools are all based on how natural systems
(i.e., biologically inspired, from basic forms of life to high level
intelligence) work by taking the parts that support their
architectures. In this paper, we take an engineering point of view,
i.e., by using reguirements specification and system verification
as the measurement tool. Since most intelligent systems arereal -
time dynamic systems (al lives are), requirements specification
should be able to represent timed properties. We have devel oped
timed O-automata that fit to this purpose. We will present this
formal specification, examplesfor specifying requirementsand a
general procedure for verification.

KEYWORDS: formal specification, constraint-based
requirements, system verification

1. INTRODUCTION AND MOTIVATION

Over the last half a century, intelligent systems have
become more and more important to human society, from
everyday life to exploration adventures. However, unlike
most other engineering fields, there has been little effort
towards developing sound and deep foundations for
quantitatively measurement and understanding such
systems. Thelack of measurement and understanding leads
to unsatisfactory behavior or even potential danger for
customers. The systems may not achieve desired
performance in certain environments, or, the systems may
even result in catastrophein life-critical circumstances.
Many researchers have suggested measures of
performance for intelligent systems, such as the Turing

Test [12], Newell's expanded list [9,10] and Albus’s

these methods are domain specific therefore hard to apply
to general cases. We advocate formal methods for
specifying performance requirements of intelligent
systems. Much research has been done on formal methods
(http://archive.comlab.ox.ac.uk/formal-methodisif over

the last twenty years. In this paper, we explore one of the
approaches, namely, using timedl-automata for
specifying performance requirements.

The timedJ-automata model was developed in [13,
17] as an extension of discrete tirhkautomata [8] to
continuous time, annotations with real-time. Timegd
automata are simple yet able to represent many important
features of dynamic systems such as safety, stability,
reachability and real-time response. In the rest of this
paper, we introduce the formal definition of timéd
automata first, then present examples of tiexlitomata
for representing performance metrics, and finally describe
a general verification procedure for this type of
requirements specification.

2. TIMED O-AUTOMATA

In general, there are two uses of automata: 1. to describe
computations, such as input/output state automata, and 2.
to characterize a set of sequences, such as regular
grammars/languages. Examples of the first category are
mostly deterministic and examples of the second category
are mostly non-deterministic. However, all the original
automata work is based on discrete time steps/sequences.
Approaches to extending automata to continuous time have
been explored in hybrid systems community over the last
decades [1,2,7]. The timed-automata model that we
developed belongs to the second category, hen:
deterministicfinite state automata specifying behaviors
over continuous time. The discrete time version af-
automata was originally proposed as formalism for the

definition of intelligence [4]. However, most of these specification and verification of temporal properties of
measures are not based on formal quantitative metricsconcurrent programs [8].

There are also efforts on comparing performance on pre-

defined tasks, such as a soccer competition [11]. However,



2.1. Syntax It is useful and illuminating to represent timeéeéhutomata
Syntactically, a timed C-automaton is defined as follows. by dlagrams. A timedl-automaton can be depicted by a
labeled directed graph, where automaton-states are
depicted by circle nodes and transition relations are by
. I . directional arcs. In addition, each automaton-state may
©) wrfwere Qisafinite Setdofsautomaton-statfeﬁ aRbID Qisa have an entry arc pointing to it; each recurrent state is
set_ of recurrent states an _D Qisaset 0 stable stat_eﬁ depicted by a diamond and each stable state is depicted by
With each q U Q, we associate an assertion &(q), which 5 gquare, ‘inscribed within a circle. Nodes and arcs are
characterizes the entry condition under which the = 5p6led by assertions as follows. A node or an arc that is
automaton may start its activity in q. With each pair g, @’ |eft unlabeled is considered to be labeled witlie.
0 Q, we associate an assertion c(q, @), Which gyrhermore, (1) if an automaton-state q is labeledsby
characterizes the transition condition under which theand its entry arc is labeled by the entry condition e(q) is

automaton may move from g to g. R and S are . i :
generalizations of accepting states. We denote by B = Q given by e(q) 2 [; if there is no entry arc, e(q)false,

(R O S) the set of non-accepting (bad) states Ridte the a,n_d (2) if arcs from q to q’_?re Iabele_(_j Py = 1n a_nd
set of non-negative real numbers representing time is labeled by}, the transition condition ¢(g, q’) is given

durations. Atimed /Fautomaton is a triple (A, T,T) where b}/ gEq qg z fgllsE-AD'?-rgtthé ; ig g;enrgtie%nbo Fgcngr??e qatt(i)ve
A is aO-automaton, T Q is a set of timed automaton- 9. ¢9. 9 : y 9

| X . i real number indicating its tim nd. Some exampl f
states and: T [0 {B} - R O {0} is a time function. cal nu ber indicating s t © bqu d. Some examples o
timed O-automata are shown in Figure 1.

[Definition 1] A O-automaton A isaquintuple (Q, R, S, e,

One of the engineering advantages of using automata
as a specification language is its graphical representation.

-F -E -F -E

EXTE X TE

-E -E
(@) (b) (©) (d)
Figure 1. Examples of timed-automata

1. Initiality: v(0) O e(r(0));
2.2. Semantics 2. Consecution:

Semantically, each assertion denotes a constraint defined a. Inductivity: Dt>0, [OUQ, t<t0t’,

on a domain of interest. Let D be a domain of interest; D rst'<t, r(t")=q and v(t) O c(r(t"), r(t))
can be finite, discrete, or continuous, or a cross product of and o

a finite number of domains. Physically, D can represent, b. Continuity: Ot, [RUQ, t'>t, [t”, t<t’<t’,

for example, speeds, distances, torques, sentences, rt")=q and v(t") O c(r(t), r(t"). _
commands or a combination of the above. A constraint C When T is discrete, the two conditions in
defined on D is a subset of D, @ D. Physically, a Consecution reduce to one, i.e[Jt>0, v(t) O
constraint represents certain relation on a domain, such as c(r(pre(t)), r(t)) where pre(t) is the previous time
a relation between external environment stimuli and an point of t.

agent's internal knowledge representation, or, a relation If r is a run, let Inf(r) be the set of automaton-states
between internal states and actions, or, the relatiorBPpearing infinitely many times in r, ie. Inf() =
between the current and next state. An element d infa|CtlX'2t, r(t')=qg}. Arunis calledaccepting if and only if

domain D satisfies constraint C, if and only iflcC. 1. Inf(r) nR£0, i.e., some of states appearing
The semantics of timed-automaton is defined as infinitely many times in r belong to R, or

follows. LetT be a time domain, which can be continuous, 2. Inf(r) O S, i.e., all the states appearing infinitely

for example,R". First, let us define runs df-automata. many times in r belong to S.

Let A= (Q, R, S, e, ¢) be@automaton and Vf — D be For a timedJ-automaton, in addition for a run to be

a function of time. Aun of A over v is a function IT ~Q  accepting, it has to satisfy time constraints. LiEtT be a
satisfying: time interval and |I| be the time measurement, and let r|l be



a segment of r over time interval 1. A run satisfies time represented by its Jacobian M#Ax. There are

constraintsif and only if: many ways to state an optimal condition for
1. Local: Forany qOT any timeinterva I, if r|l isa robustness. One method is to minimize |w| where
segment of consecutive states of g, then || <t(q); w is the diagonal elements of W in the singular
2. Global: For any timeinterva I, if r|l isasegment value decomposition of J = UWYV

of consecutive states of BOS, then [ixg(r(t))dt
<1(B), where xg. Q- {0,1} isthe characterization
function for the set B. 3.2. Examples of /FAutomata

A _ With automata, timed dynamic behaviors can be specified.
[Definition 2] A timed U-automaion TA = (A, T, T)  Here is a set of examples for specifying performance using
acceptsatrace v, if and only if timed O-automata, as shown in Figure 1:

LAl runs are accepting for A; . 1. Let G be a constraint that the distance between

2. All runs satisfy the time constraints. the robot and its desired position is less than some
constant value. Then Figure 1(a) specifies that the

With the semantics defined, we can infer that, for the robot will eventually arrive its desired position.

timed U-automatain Figure 1, () specifies the behavior of 2. Let G be a constraint that the error of a learning
reachat_)lllty, €., e"e”_“!a”y the syste_zm should &‘t'sfy algorithm is less than a desired tolerance. Then
constraint G, (b) specifies the behavior of safety, i.e. Figure 1(a) specifies that the learning will

congtraint G is never satisfied, (c) specifies the behavior of

bounded response, i.e., whenever constraint E is satisfied,

congtraint F will be satisfied within bounded time and (d)
specifiesthe behavior of real-timeresponse, i.e., whenever

constraint E is satisfied, constraint F will be satisfied 3
within 5 time units.

eventually convergence. If let the state-@ in

Figure 1(a) as a timed state with time bound t, it

further specifies that the learning will be done

within time t.

Let G be a constraint that the distance between

the robot and obstacles is less than some constant

value. Then Figure 1(b) specifies that the robot
will never hit any obstacle. If G denotes that the

3. EXAMPLES OF PERFORMANCE current memory usage is out of the limit, Figure

SPECIFICATION 1(b) specifies that the memory usage at any time
is within its limit.

4. Let E be an external stimuli and F be a response.
Then Figure 1(c) specifies that there is a response
after stimuli within bounded time. Figure 1(d)
specifies that such a response is within 5 time

. P units.

3.1. Examples of Constraint Specification Even though timed-automata are powerful, still they

Constraint  specification alone can specify many  are not able to represent all forms of performance metrics.

performance metrics. Constraints specify relationsbetween  For example, optimal performance over time fiiydt is

external environment stimuli and an agent's internal not specifiable with timed-automata. This form is mostly

knowledge representation, or between internal states anflsed for characterizing energy, efficiency or overall errors.
actions, or between the current and next states. Constraingsrthermore, specification with probability behaviors are
can be finite, discrete or continuous, or any combination of,ot included either. However, it is not hard to add
the above. Constraints can be linear, nonlinear, equalitied opapility, for example, instead of “all runs” must be

or inequalities. Moreover, constraints can also Specifyaccepting and satisfying time constraints, we can say “x%

optimal conditions or _optimali_ty with extra constrair_lt_s, Or runs” must be accepting and satisfying time constraints.
combinations of multiple optimal criteria and additional

Timed [C-automata are smple yet powerful for the
specification of behaviors of dynamic systems, since it
integrates constraint specification with timed dynamic
behavior specification.

constraints. . 3.3 Performance Comparisons
Considering the following examples for specifying

constraints: Note that requirements specification defines what the
1. Inequality: f(x) < O where x is a vector of System should do, rather than defining how the system is

variables and f is a vector of functions. organized, i.e., its architecture. For example, behavior-

2. Optimality: min |f(x)| where || is a norm for x. based control [4,6] (which is arbitration based or a
3. Negation: x # y. horizontal hierarchy) has a different form of architecture
4. Constrained Optimality: minlf(x)| given g(&o0. from function-based control [5] (which is abstraction-
5. Robusiness Let f(x) be a set of output functions based or a vertical hierarchy); model-based systems have a

with x as inputs. The robustness can be different form of architecture from learning-based systems,



event-driven systems have a different kind of architecture
from time-driven systems. Different systemswith different
architectures can till be compared based on the behavioral
interface under the formal performance specification. For
example, given a set of regquirements specification Rs and
system A satisfies a subset As [0 Rs and system B satisfies
asubset Bs [0 Rs. If As [0 Bs, system A is not better than
system B with respect to requirements Rs. Similarly, if
system A satisfies requirement o and system B satisfies
requirement 3 and if a implies 3, system A is better than
system B with respect to the requirement.

However, this specification does not define metrics on

hard. We advocate the latter approach, i.e., using titred
automata for requirements specification and using
Constraint Nets [13,18,19] for system modeling. Control
synthesis [13,14] and verification [13,15,16,17,20] are also
studied in this framework.

In this paper, we have shown how to use formal
methods to specify the performance metrics of intelligent
systems, with timedJ-automata as an example. The
advantage of formal methods over other methods lies in
their precision and generality. Timédautomata, with its
graphical depiction and constraint specification, is a simple
yet powerful formalism for specifying many properties of

architectures. The measurement of performance should dynamic systems.
come from the customer’s point of view, but the
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Each scientific development that claims to provide a“new way” for approaching existing problems
needs proper (i.e. formal and quantifiable) evaluation methods and consensus-based criteria for
measuring the validity of its claims. Taken together, these methods and criteria constitute the metrics by
which new developments are being measured against their claims. Various claims have been made in
the literature for the technology of intelligent software agents. Such claims include a new approach to
programming providing a breakthrough comparable to the one achieved through object-oriented
methods; an approach to programming that is more readily understood by non-programmers; an
approach that lowers the costs of software inter-operability.

Software agents need proper metrics if the technology is to fulfill its promises and make a lasting
impact. One characteristic distinguishing software agents from software developed with object-oriented
and procedural methodologiesis the anthropomorphic characteristics that agents exhibit. Various
taxonomies for software agents currently exist [1, 2, 3]. Agents typically present one or several of the
following characteristics:

Pro-activeness and goal-orientation

Reactiveness (reactive agents)

Autonomy (rational agents, and others)

Mobility (mobile agents)

Learning and reasoning ability (deliberative agents, and others)
Social ability: communication and cooperation (multi-agent systems)

An agent is considered intelligent if it can learn from its environment and modify its behaviors and goals
to respond to environmental constraints that were uncertain and unforeseen at the time of development.
Agents are thus particularly adapted to model environments where software components act
autonomously on users behalf and problem-solving environments where parameters of computation
dynamically change during processing. The ability to learn for an agent is coupled with the ability to
perform resource and knowledge discovery. This action may take the form of querying and updating
knowledge-based systems. Knowledge discovery and interpretation bring latency to the agent and may
impair the achievement of its overall goals. For instance, reactive agents that need a quick response
time may not embody much learning and reasoning because the overhead renders the agent useless.



Software agents present one or some capabilities that are affected by the choice of specific components
described in the Tools of Intelligence (see White paper). For instance, searching for a required object
within a scene is one area where software agents have successfully been implemented. If you take the
“scene” to be an information space like the Internet, information-gathering and retrieval agents display
this capability and have been successful at performing the task. Deliberative agents such as Belief-
Desire-Intention (BDI) agents exhibit the capability of remembering scenes and experiences as their
Beliefs are based on this capability. These agents are also able to interpret and respond to unforeseen
situations.

Agents ability to autonomously execute processes on remote systems, given the appropriate
permissions, is aso a characteristic some intelligent systems (but not al) need to efficiently and
effectively perform. Thisrequires proper measures. This characteristic, known as mobility, has very
different meaning for physical agents.

Mobility requires intelligence for software agents because true mobility requires resource discovery.

For those agents designed as mobile agents the degree of mobility can constitute a measure of its
intelligence. Mobile agentstravel over networks such as the Internet and execute processes on remote
platforms. Mobile agents may start execute a process on a particular machine, be unexpectedly
interrupted, travel to another available platform, and continue the execution of the process from where it
was interrupted.  Such a mobile agent needs intelligence to interrupt and restart its execution
autonomously without resetting, and for determining which resources to use in a networked
environment. Network agents used for telecommunication applications (such as testing the reliability of
a network) exemplify these types of agents.

Socia intelligence needs to be measured in multi-agent systems. The degree of socia interaction and
the agents' ability to exhibit social behavior constitute an important criterion for multi-agent systems.
Not all agent-based systems need to exhibit this characteristic (mobile agents may never need to tak to
each other for instance). The type of social interaction between agents conditions knowledge
acquisition and interpretation. The social model affects the individual pursuit of goals and may
ultimately affect the survival of the system [4]. When one considers a multi-agent systems, there are at
least two models. Both types of multi-agent systems, collaborative and cooperative, display the
characteristics of open systems.

Model 1: Each individual agent’s goal is subservient to an over-arching goal of the system. We have
a cooperative system, where agents agree not to pursue goals detrimental to each other and the
whole system, even if these “careless’ goals are in accordance with the individual agent’s goal.

Model 2: Each agent acts on its own behalf without recognizing a higher agent-entity with the ability
to regulate its goals (there is still aneed for akind of supervisor agent that regul ates
communication). We have a collaborative system. Thisisthe case for so-called rationa agents,
used especidly in e-commerce, where agents act in a market-like environment, with the ability to bid
for money on the goods and services each offers.

Agent-communication languages should theoretically let heterogeneous agents communicate, but none
currently do [5]. A significant part of the inter-operability issueis the lack of a shared content language
and ontology. An ontology expresses, for a particular domain, the set of terms, entities, objects, classes



and the rel ationships between them with formal definitions and axioms that constraint the interpretation
of theseterms [6]. These definitions and axioms are written in a variety of logical languages (e.g. KIF
[7]), and provide aformal theoretical basis to domain taxonomy. They can serve to automatically infer
tranglation engines between software applications. By making explicit the implicit definitions and
relations of classes, objects, and entities, ontologies aso contribute to knowledge sharing and re-use
across systems. The use of ontologies in agent-based systems is proposed as a criterion for the metrics
of intelligent software agents. The degree of completeness and consistency of ontologies can be formally
proven and provide a quantifiable criterion.

Ontologies constitute an important criterion for the metrics of intelligent software agents, in particular
for agents exhibiting the socia abilities of communication and cooperation. Software agents require the
use of or atrandation to a shared terminology and syntax in order to efficiently and effectively inter-
operate. Agent-communication languages such as KQML meet the challenges of inter-operability with
mitigated success [8]. Agent communication languages specify the possible use of ontologiesin their
syntax but do not requireit. FIPA ACL proposes an ontology service as a normative specification [9].

In conclusion, software agents exist either as standalone or in socia systems. Agents are made of
components, and an agent-oriented architecture typically includes the agent application as well as an
environment in which agents execute. They may execute on a single machine, on several machines
connected locally or by wide-area network. These agents need a degree of mobility. They may be
developed by different developers on different platforms, and therefore need a common communication
language including protocol and ontologies (see [10] for an assessment of the state-of-the-art in this
ared). Inaddition, since agents may exhibit any combination of the characteristics above, some
taxonomies of agents prefer a classification based on the domains in which software agents have been
successfully implemented [11], rather than on their inherent characteristics.

Software agents also exist as whole, where an agent-based system is made of the agent and the
underlying environment.  The environment may include the knowledge repositories and ontologies
which are key to the agents' degree of intelligence. For this reason, the mind/body dichotomy, and the
proposition to measure the intelligence of the system based on the intelligence of the mind (controller),
do not hold for agent based systems.

In addition to characteristics applicable to Constructed Systems with Autonomy, the metrics of
intelligence for software agents need to include the following (not all these characteristics need apply for
the same system):
- be domain-specific

measure the degree of mobility

present an agent communication language

refer to ontologies.
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ABSTRACT

The minimal representation size criterion provides a metric for the
configurational complexity of robotic tasks and may be used to
evaluate aternative algorithms, strategies, and architectures for the
accomplishment of specific tasks. The principles of explicit and

implict representation are used to define this complexity and the
resulting information measure derived may be considered as a
measure of configurational intelligence of the system.

Specifically, these measures indicate the interna explicit

information required to specify the accessible states of the robotic

system using its available perception and actuation capabilities.

The resulting approach may be used to evaluate and guide
applications tasks such as robotic assembly and multisensor

manipulation.

Keywords. minimal representation size, intelligent systems,
. performance metrics, robotics

1. INTRODUCTION

Intelligent robotic systems couple computational
intelligence to the physical world and such systems may be
considered as intelligent agents that perceive the
environment, and select an action or sequence of actions to
affect the environment. Such an intelligent agent constructs
an internal “representation” of the environment, and uses
reasoning to choose among alternative actions.
Specifically, we can define robots as “active, artificial,
intelligent agents whose environment is the physical
world”. Such agents may be distinguished from software
agents, human agents, and others.

Such an intelligent robot is regarded as “rational” if the
agent makes decisions to choose actions that accomplish a
known task goal, or increase a performance measure of the
task. It is important to distinguish the presence of
intelligence from the metric of performance. Intelligence
(reasoning), in itself, does not maximize overal
performance. However, intelligence may be used to choose
among a set of candidate actions that may improve
performance or achieve agoal.

An intelligent robot may also be characterized by its
autonomy. In the context of these definitions, autonomy
refers to the capacity of the robot to define its own goals or
sub goals, often based on its perception and internal
representation of the environment. Autonomy widens the
scope of tasks, which the same system can perform without
reprogramming, but in general, requires more sophistication
in the design and architecture of the system. The non-
autonomous system may accomplish a smaller set of tasks
and may require efforts to constrain or redesign the
environment to conform to task assumptions.

The structure of an intelligent robot agent includes
perception, representation, reasoning, and representation.
The implementation of such an agent requires two major
components: (1) Algorithms that define the representation
structure and reasoning sequence, and (2) Architecture that
defines the organization of the system to accomplish set
goals and performance. In practice, the selection of the
architecture has been strongly intertwined with the nature of
the representation. For example, one simple intelligent
robot defines a perception-action pair such as “move hand
if you touch the hot stove!” Such areflex action might be
expressed as alook-up table in which state representation is
asimple binary element.

As the complexity of robots and tasks increases, a single
reflex action is inadequate to create required behaviors, and
architectural approaches have tended to evolve in two
directions. First, hierarchical architectures have been
based on the definition of a hierarchy of explicit
representation of the robot state. A hierarchy of perceptual
representation may involve image features, shapes, objects,
scenes, etc., while a hierarchy of actions may involve joint
motion, arm motion, robot motion, sensor-based motion etc.
The formal definition of such a hierarchical architecture [1]
has provided an important basis for building consistent,
predictable, and programmable robotic systems.

A second trend has been the development of behavioral
architectures [3] that expand upon simple reflexes by
creating a network of interdependent reflexes in order to
increase the sophistication of the behaviors. One such



behavioral approach isthe subsumption architecture [5] that
utilizes finite state machines to impose a priority setting
logic on the reflex actions. The nature of such behavioral
architectures is to incorporate an implicit representation of
the environment in order to define a simplified state space
of perceptions and actions. From a systems perspective, the
behavioral architecture utilizes constraints or assumptions
about the environment to identify a subspace (manifold)
within the explicit state space. A reflex action, or set of
actions, may then be defined within the subspace with the
logical consistency to achieve goals and performance
metrics.

The distinction between explicit and implicit representations

is important to the interpretation of intelligence in systems.

A simple task example helps to illustrate these distinctions.

Consider a room with a single door containing a mobile

robot. The robot task goal is to exit the room, and it may

have a performance metric of minimum time to exit.

Several different types of algorithms may be considered:

(1). Random search (Figure 1a)

The robot moves in random directions without using
perception, mechanically bouncing off the walls.
Eventually, it is guaranteed to exit the room.
(2). Wall following —simplereflex (Figure 1b)
The robot uses a simple sensor to detect presence or
absence of an adjacent wall. The agorithm:
IF (‘wal-is-in-front") THEN (' Turn-Right") ELSE
(‘ Follow-wall-on-left’)
is guaranteed to find the door, though the path may be
long.

(3). Perception - Explicit state representation (Figure 1c)
The robot uses a sophisticated vision sensor to view the
door, acquire a perception, P, update the global internal
state representation, GS, and plan an explicit path to
the door.

(4). Perception — Implicit state representation (Figure 1d)
The robot defines an implicit mapping of GS to local
state, LS, that is consistent with the desired goal state.
By mapping perception into LS, rather the GS, the
resulting algorithm is often more efficient and simpler
to implement. In this case, consider a sensor that
perceives only the width, W, of the door, but no other
attributes of the environment. We choose W to be the
local state representation, LS = W, and define a local
reflex algorithm to choose an action, A:

Choose A toincrease W.
(). If robot, R, moves toward the door, W' > W.
(b). If R moves perpendicular to the door, then W’ >W.

The resulting local changes in W move the robot toward
and through the door, achieving the global goal. However,
LS is never sufficient to explicitly locate the robot in the
room, i.e. determine GS. This strategy is analogous to a
potential field mapping related to the perceived door width
feature of the room. The same strategy may be used as a

feature-based method to guide a peg-in-hole or other
assembly problem using visual servoing of the area of the
target hole [26].

These examples illustrate several types of tradeoffs in the
design of intelligent systems, and also confirm that the most
intelligent system may not result in the optimal
performance on a given task, as illustrated in the
performance of the feature-based example. First, for this
purely geometric task, we can define one component of the
intelligence of the system, the configurational complexity as
the information required to represent the accessible states
of the internal representation of the system. “Accessible
states” are defined as those states that may be achieved as
goal states of the system through its perception-action
algorithms. In this sense, the representational intelligence
of the system is equated to the size of the internal
representation space.

For the examples in Figure (1), the configurational
complexity is found to be: (a). 1 bit, (b). 3 bits, (c). 30
bits, and (d). 10 bits, where a resolution of 10 bits has been
assumed for the vision sensor used in (c) and (d). By
considering the approximate number of steps required to
achieve the result, on can similarly compute the cumulative
complexity for each of the tasks to be: (a). 100 bits, (b).
75 bits, (c). 60 bhits, and (d). 20 bits. Therefore, the
minimal complexity approach to the task is given by
strategy (c¢) and may be regarded as a tradeoff between
explicit and implicit information needed for the task.

In addition, the time (number of steps) required for each
task is implicit in the cumulative information and reflects
the inherent deficiencies in the worst case scenarios for (a)
and (b). Based on the viewpoint of encoded residuals
discussed in the next section, one can also calculate the
encoded implicit information for each strategy: (a). 20 bits,
(b). 18 bits, (c). 0 bits, (d). 12 bits.

Figures (e) and (f) emphasize the inherent assumptions that
are often present in such systems. Strategies (a) and (b) are
not guaranteed to succeed for problems (€) and (f), where
the subspace manifold defined by the strategy is no longer
guaranteed to contain the goal. Strategies (c) and (d) may
still  succeed but require more steps and a more
sophisticated algorithm.
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Figure (1). Examples of alternative strategies for the task of exiting a room through the door: (a). Random search, (b).
Wall-following, (c). Explicit representation and global planning, (d). Implicit representation and local reasoning. All four
strategies will accomplish the basic task. However, (a) and (b) are not general and will fail when the environment differs
from the basic assumptions, such asin (€) with inner walls, and in (f) with multiple doorways.



2. MINIMAL REPRESENTATION SIZE

The minimal representation size (MRS) methods
[6,18,19,23,24] used in thiswork are also called “minimum
description length” methods in the literature. The MRS
approach introduces an information measure of model
complexity and has been applied to a number of related
problems in attributed image matching [22], shape
matching [11], density estimation [4], and model based
sensor fusion [11-17]. The minimal representation criterion
defines the minimal overall data representation among a
choice of alternative models and trades off between the size
of the model (e.g. number of parameters) and the
representation size of the encoded residuals. Intuitively, the
smaller, less complex, representation is chosen as the
preferred model for a given performance criterion. Interms
of the robotic systems we consider here, the representation
size combining state and model information serves as a
measure of system intelligence, and the MRS criterion will
select the minimal complexity system for a given task
performance. In practice, the MRS criterion has advantages
in the attainment of consistent metrics without the
introduction of problem specific heuristics or arbitrary
weighting factors. The MRS family of methods provides a
type of “universal yardstick” for data and models from
disparate sources, and therefore has been successfully used
in multisensor fusion interpretation problems.

The MRS criterion has been proposed as a general criterion
for model inference by Rissanen [19] and by Segen and
Sanderson [23]. It is an expression of the ideas on
algorithmic information theory pioneered by Solomonoff
[24], Kolmogorov [18], and Chaitin [6]. The MRS
approach is based on the principle of building the shortest
length program that reconstructs observed data. The length
of this program or representation size depends on both the
statistics of the sensors and on the systems “knowledge” of
the environment, specified by a set of models and
constraints.

More formally, the representation size is the length of a
program in bits that, when executed on a deterministic
Universal Turing Machine (UTM) [7] would reproduce the
observed data on the output tape. A model based encoding
scheme is used in which the data is thought to be arising
from one of the several available modelsin a model library,
Q. The models may differ in structure and number of
parameters. The observed data D is encoded by specifying
an instantiated model q and the deviations or residuals of
the data D from the selected model g e Q. The resulting
representation sizeis

L[a.DIQ] = L[alQ] + L[D|a.Q]
= L[qlQ] + L[AJa.Q] + L[DIQ.,a.Q]

where L[q,D] is the total representation size of data D when
explained using model g, given a model library Q.
L[d|A,q,Q] is the number of bits needed to encode the data
deviations or residuals from the model, given a coding
algorithm, A. L[A|g,Q] is the number of bits required to
specify the coding algorithm itself, given an environment
model. L[q|Q] isthe number of bits required to encode the
environment model (structure and parameters) given a
model library, Q.

According to the minimal representation principle, the best
explanation of the observed dataisthe one with the smallest
representationsize

Qopt = arg mMingen L[q|Q] + L[A|g,Q] + L[DIA,q,Q].

This approach finds the simplest explanation of the data
that is most likely, and objectively trades off between
model size, algorithm complexity, and observation errors.
Rissanen [19] showed that a finite set of random samples
from a class of probability distributions would be
complexity bounds as defined by Kolmogorov [18] and
others [6,24], and the representation size can be used to
choose among alternative distribution models. Barron and
Cover [4] showed that such a minimal representation size
probability distribution is statistically accurate and the rate
of convergence is comparable to other methods of
parametric and nonparametric estimation. In our previous
work [13-17], we have structured the model-based pose
estimation problem such that the pose transformation
parameters are isolated elements of the statistical model,
and may be estimated by the minimal representation
criterion.

3. PARTS ENTROPY AND
MEASURES FOR ASSEMBLY

INFORMATION

Geometric task complexity is directly related to the
geometric state space and the precision of state definition or
partitioning. In earlier work [20], we have defined the parts
entropy as a measure of configuration uncertainty in
mechanical systems with particular application to assembly
analysis and assembly planning. In this formulation, the
entropy of a distribution of independent objects, or parts, is
given by

Hn=Hn ( Py, ..., Py) =-S P logs Py .

where uncertainty in position and orientation is described
by the joint probability distribution P(x,y,z,a,b,c) over the
joint ensemble. As an entropy measure [7], H may also be
interpreted as the information required to specify the
position of the objects in their geometric configuration
space.



The part entropy of an object is defined with respect to the
mechanically distinguishable positions and orientations, and
the resolution, d, in each coordinate degree of freedom.
The symmetry of an object therefore strongly affects the
resulting orientational entropy and is defined by the set of
group operations that leave the object invariant. For
example, a sphere has 0 bits of orientational entropy, while
a cube with 10 bits of resolution would have 24 bits of
entropy.

The part entropy may be used as a basis for the
configurational representation size, and is directly related to
the set of constraints or other geometric assumptions made
on the environment. For example, aflat surface reduces the
entropy of partsthat sit onit. The entropy of a cube sitting
on a table (with 10 bits of resolution) is 28 bits, while a
general rectangular solid will be 30.1 bits, and a cylinder
may vary from 20 to 30 bits depending on its proportions.

For an assembly task, we consider a set of parts {Q}, | =
1,...,N, such that the part relationships are defined by join
probabilities P[Q, ... Qn], and the parts entropy is defined as
the joint entropy H[Q:.. Qn]. If the parts are positioned
independently, for example, prior to assembly, then the
probabilities will be independent:

PQ1... Qn] = P(Qu) P(Q2)...P(Qu),

and

H[QL.. Qu] = SH(Q).

As the assembly task proceeds, individual parts entropies
decrease as parts are positioned, and the entropy of the
ensemble decreases as part dependence is increased during
mating operations. In this sense, an overall goa of the
assembly task is to reduce the joint entropy of the ensemble
of parts. If we define the entropy of the final rigid
assembly to areference frame with Hg = 0O, then the relative
entropy of parts and subassemblies may be tracked as a
function of time and the entropy flow of the process
described in terms of bits per second, that is, information
flow. Alternative systems choices and parts designs may be
compared in terms of the entropy flow and used to guide
decisions on assembly system design. An example
described in [20] tracks the parts entropy sequence for
sequential assembly for three different electronics assembly
strategies. Similar concepts of part probability distributions
may be linked to tolerance specifications of assemblies, and
have been used to evaluate assemblability based on
maximum likelihood methods [21], and used to guide
assembly planning tasks [8-10].

4. MULTISENSOR FUSION MANIPULATION
EXAMPLE

Figure (2). Five fingered anthropomorphic robot hand
manipulating an object. The camera observes motions and
minimal representation metrics are used to determine object
configuration [16].

The MRS approach has been applied to the problem of
multisensor fusion for pose identification of objectsusingin
manipulation by a robot hand. The setting of the task is
shown in Figure (2). A five-fingered Anthrobot-3 [2] hand
is mounted on a six degree-of-freedom (DOF) articulate
PUMA-760 robot arm. The hand is provided withfinger tip
tactile sensors that sense planar surface contact with the
grasped object. The hand is in the field of view of a
calibrated camera with edge detection algorithms. A
polyhedral object is grasped by the hand and manipulated
within the cameraview.

In this task scenario, the minimal representation criterion is
used to integrate the perception and manipulation steps
through the use of consistent information-based criterion
for consistency of interpretation of the manipulation with
the viewed object pose from the camera. In this task, both
the camera information and the tactile sensing data is
extremely noisy and uncertain.

The minimal representation formulation of this problem is
described in detail in [16]. In this approach, the model-
based representation of the hand-eye coordination is
described by a set of general constraint equations

h(y;z)=0

where Y is a set of model features, and Z is a set of
observed data features. In general, such constraints may



themselves depend on other model features.  Often
observed data features may not be related to actual events
and identified as unmodeled data features.

The association between the observed data features and the
model features is defined by a correspondence w, and this
correspondence is a part of the identified model. In
addition, a model of the feature extractor, F, for vision and
tactile sensing is used to described the process. Application
of the MRS approach defines a representation size for each
candidate model and set of observations subject to the data
constraint manifold, DCM, defined by h(y;z). The
representation size of the model and encoded residuals is
minimized within the measurement subspace locally
orthogonal to the DCM.

In general, the search over many candidate models and
correspondences is difficult and does not lend itself to
linear continuous search techniques. In [16] we use a
differential evolutionary algorithm [25] to carry out this
search and identify viable interpretations as minimal
representation size interpretations of manipulation and
sensing states of the system. Figure (3) shows an example
of the evolution of the configuration states of the system as
the differential evolutionary algorithm proceeds. The
system converges to a well-defined and consistent
interpretation of the current state (figure (4)).

5. DISCUSSION

The minimal representation size criterion provides a metric
for the configurational complexity of robotic tasks and may
be used to evaluate alternative algorithms, strategies, and
architectures for the accomplishment of specific tasks. The
principles of explicit and implict representation are used to
define this complexity and the resulting information
measures derived may be considered as a measure of
configurational intelligence of the system. Specifically,
these measures indicate the internal explicit information
required to specify the accessible states of the robotic
systems using its available perception and actuation
capabilities. The resulting approach may be used to
evaluate and guide applications tasks such as robotic
assembly and multisensor manipul ation.

As discussed here, the characterization of tasks is defined
with respect to geometric configurations. An important
extension of thiswork isto consider the application of such
a formulation to a more general task space involving, for
example, force and dynamics of the system requirements.

Cepie Al im0

s

Crepresrat ion #1)

Corpration 2

Figure (3). Differential evolution algorithm utilizes
representation size metric to search for consistent
interpretations of object pose in the hand of manipulator.
The minimal representation size pose requires the minimum
information to represent.



Figure (4). Final minimal representation pose of the object
determined by the differential evolution search.

A second extension of this work is the consideration of
intelligent robotic systems with adaptation and learning
capabilities. As shown in the multisensor fusion
manipulation example, the representation size may be used
as a criterion for evolutionary learning of configuration
interpretations. In general, this approach might be used to
guide learning of algorithmic structure and strategies
leading to more sophisticated behaviors.
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ABSTRACT

In many real world applications, system Autonomy is the

most single significant and meaningful attribute of
Intelligent Autonomous Systems - I4S. This paper presents
performance metrics for /A4S, which are related to
Autonomy. Metrics are presented and defined. These metrics
are currently being used in on-going research, development

and engineering work.

1. INTRODUCTION

From an engineering point of view, performance metrics for
IAS are needed for establishing and developing the
following system level processes: a) a sub-process within
the multi-phase system engineering process, €.g., system
requirements analysis; b) preliminary and detailed design
process; ¢) Concept-of- Operation development process; d)

comparative evaluation of alternative designs.

A fundamental question which is related to /A4S performance
metrics is: Which entity is more meaningful and practical
to define and to measure with respect to /AS performance —
Autonomy or Intelligence? Our position is that from the user
point of view, as well as from the system architect and
designer point of view, Aufonomy is the premier
characteristic attribute of an IAS. Although Intelligence

enables Autonomy, it is not considered by us as either an
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appropriate or a practical system design objective or a

system performance requirement per se.

The concept of Autonomy is probably more meaningful,
more communicatable, and more precisely measureable, and
it is easier to come to a consensus about what Autonomy or
what an Autonomous System is all about, rather than what is

Intelligence or what is an Intelligent System.

2. AUTONOMY

Currently, two distinguished approaches to define system
autonomy are used by researchers and groups within the
intelligent autonomous systems (including autonomous
agents) community. The first approach defines autonomy as
an entity which is assigned to the subject system or to the
subject agent by a higher level authority, e.g., a supervisor
agent. Within the context of this approach, autonomy is
defined with respect to the assigned responsibility of a
system or an agent. Within this context, autonomy reflects
the agent's decision-making capability and authority, and
the degree of self control the agent has over its own
decisions, see [1]. This approach is more commonly used
within the autonomous agents community. The other
approach defines system or agent autonomy with respect to
its self capability to accomplish its assigned mission goals
while operating under uncertain dynamic environment,
uncertain dynamic scenario and self faulty situations, and
without or with very little human or external agent

intervention, [2], [3]. We are using the later approach.

Definition: Autonomy is an attribute of a system which
characterized its ability to accomplish the system's assigned
mission goals without any or with only minimal external
intervention, while operating under constraints and under

uncertain dynamic environment and scenario conditions.
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3. CRITERIA FOR METRICS

In the sequel, some guidelines for metrics selection are

proposed.

3.1 Scope

The proposed metrics should reflect system autonomy as
perceived by an external observer. Therefore, the autonomy
should be measured outside the system boundary, i.e., in the
interface of the system with external entities. Figure 1, in
the sequel, illustrates the context of Autonomy Evaluation,
as perceived by an external observer. Four entities are
identified within the relevant context, namely: a) a Remote
user or supervisor; b) an External Agent; ¢) Environment &
Scenario; d) System Under Evaluation (SUE), which is the

Autonomous Intelligent System to be evaluated.

3.2 Autonomy Relevance

Meaningful, effective, and measurable metrics for system
autonomy should reflect the influence of the following

factors as related to system autonomy:

* Level of Abstraction of the commands and the data
provided to the autonomous system by the remote

user/ supervisor or by an external agent.

* Information bandwidth between a remote user/
supervisor or an external agent, and the system under

evaluation.

* The levels of complexity, dynamics and uncertainty
which are attributes to the environment under which

the system is operating and executing its mission.

* The levels of complexity, dynamics and uncertainty
which are attributes to the system operating scenario

while executing its mission.
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33 Generality

Although the meaning of performance metrics is usually
domain and application specific, more general entities, such
as the principle of entropy can be used within the
framework of /4S performance evaluation. In our work,
entropy is used as a general measure of entity uncertainty,
and is applied to measure various parameters. Using entropy
as a general tool for representing uncertainty in the domain

of control and system engineering was proposed by Saridis

[4].
34 Structure Independence

The metrics for Autonomy should be independent of the
internal structure, e.g. : a) number of levels of the hierarchy;
b) the decomposition of /4S internal processes to resolution
scales; c) the computational paradigms, e.g. fuzzy vs. neural
networks, and d) other internal specific features. The
attempt to establish metrics which takes into account
internal specifics of the system will lead to an endless
confusing and unpractical effort, and to unstable
solution-depended metrics. System Autonomy is a system
attribute as perceived by an external observer. In analogy,
consider a consumer which want to buy a new car. His
decision will not depend on whether the fuel injection
control system uses a fuzzy logic based controller or a
differential geometry based non-linear controller. However,
his decision will probably be based on user-centered
parameters such as: fuel consumption (kilometers per liter),
number of passengers, safety measures, to name but a few.
In such evaluation, the internal specifics are irrelevant. So
are the internal specifics when one has to evaluate the

performance of an Autonomous Intelligent System.
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4. METRICS

In the following section, the metrics used for /4S
performance evaluation are defined. The nomenclature used

is described as follows:

4.1 Nomenclature

(M

Nomenclature :

ChS - Channel Sensitivity

EnS - Environment Sensitivity

InS - Information Sensitivity

ScS - Scenario Sensitivity

H - Entropy

H(V) - System Entropy

H(T) - Environment Entropy

H(A) - Scenario Entropy

C - Channel Capacity of Data Link
between Remote-User or External Agent
to System

U - System Under Evaluation (SUE)

I' - Environment

A - Scenario

I - FEaxternally provided system Information
(global and mission related)

® - Remote User

Q0 - Problem Context

n - Time step index
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42 Entropy

We are using entropy as a measure of uncertainty of system
state, environment state, or scenario state. The uncertainty
associated with predicting the next entity state, given the
current entity state, is a measure of the entity irregularity or
‘disorder’. The less is the entity regularity, the greater is the
next state prediction uncertainty and the greater is the
associated entropy. Thus, entropy can be used as a measure
of environment uncertainty as well as a measure of scenario
uncertainty. Entropy can also be used as a measure of
system uncertainty, which is directly related to system
performance. It can represents the uncertainty in selecting
the appropriate control from the set of all admissible
controls [4]. Entropy can also be used for representing
performance, e.g., system tracking error along a planned

trajectory in the system state space.

We define entropy as follows:

@)

Entropy Definition
P(X,n,1) = Prob {X(n+1)=X; | X(n)} ;

X, € {X}

H(%w =- X P(XonD) o In P(X,n,0)
X - Entity State -

(e.g., best control action; Environment State;
Scenario State)

H - Entropy

H(¥) - System Entropy

H(T') - Environment Entropy

H(A) - Scenario Entropy
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4.3 Channel Sensitivity

Channel Sensitivity- ChS, is defined as the differential @)

change of the system entropy which results after a

FEnvironment Sensitivity :

information data link between a remote-user and the System  |(EnS), = AAIE((\I;’ n)) ?I[j((l?,n))
n n

Under Evaluation - SUE, or between an external agent and | U=p; C=C 1 T=Ty; A=Ay D=3,
the SUE, has occurred.

differential change in the channel capacity of the

3) BnS = L3 (EnS),
n k=1

v, € {U}; Ofe{c‘}; La e {T'};
Ag € {A}; @ € {D}; Q= (A, 9,C,1)

Channel Sensitivity :
AH(V,n))/H(¥,n)

(cns), -
AC(n)/C(n) Definitions:
| @=vo; O=cj3 D=ty A=A, @=o, If EnS =1 = SUE is Non-Autonomous w.r.t. I,
under context 2
Ohs — 1 i (Cns), If 0< FnS <1 = SUEis Partly Autonomous w.r.t. T,

n k=1

U, € {¥}; Xo&{X}; T e (T}
As € {A}; &5 € {D}; Q= (I, A, @,1)

under context 2

If EnS =0 = SUE is Completely Autonomous w.r.t. I,

under context Q)

Definitions:

If ChS < 0 = SUFEis Non-Autonomous w.r.t. C,

under context Q 4.5 Scenario Sensitivity

If ChS = 0 = SUEis Autonomous w.r.t. c, . . . . X
Scenario Sensitivity- ScS, is defined as the differential

under context ) .
change of the system entropy which results after a

If ChS = 0 = SUEis Non-Supervisable w.r.t. C, . . . . .
differential change in the scenario entropy, or uncertainty,

under context )

has occurred.

4.4 Environment Sensitivity

Environment Sensitivity- EnS, is defined as the differential
change of the system entropy which results after a
differential  change in the environment entropy, or

uncertainty, has occurred.
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&)

)

Scenario Sensitivity :
_AH(Y,n)/H(V,n)

T AH(An)/H(An)

|| le:‘I’m; O:Cf;F:Fa:, A:Ad;' d=;

(scS),

5e5 = L5 (8es),
7 =1

A € {A); & € {9}; Q= (T, 9,0,1)

Definitions:
If SeS > 1 = SUEis Non-Autonomous w.r.t. A,
under context )

If 0<8eS <1 = SUEis Partly Autonomous w.r.t. A,

under context Q)

If 8¢S =0 = SUE is Completely Autonomous w.r.t. A,

under context )

4.6 Information Sensitivity

Information Sensitivity- InS, is defined as the differential
change of the system entropy which results after a
differential change in the system global and mission related
externally provided information, has occurred. The
information includes the Mission Plan and the related Data
Bases which provided to the autonomous system by the
remote user/ supervisor or by an external agent, prior to

mission execution, or while the mission is executed.
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Information Sensitivity :

_ AH(W,n))/H(¥,n)
- AL/l

U, € {u}; XgpefX}: T e {r}h
As € {A}; @, € {@}; Q= (T, A, ®,C)

Definitions:

If s = 1 = SUE is Non-Autonomous
w.r.t. I, under conteat ()
If 0 < InS <1 = SUEis Partly Autonomous
w.r.t. I, under context )
If InS =0 = SUE s Completely Autonomous

w.r.t. I, under context ()

4.7 Adaptation Rate Sensitivity

Adaptation Rate Sensitivity - ARS, is defined as the
differential change of the system entropy rate which results
after a differential change in the entropy of the subject
entity, e.g., environment or scenario, or uncertainty, has
occurred. Similarly, Adaptation Rate Sensitivity can be
defined in relation with differential changes of channel

capacity or information.
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(M

Adaptation Rate Sensitivity:

(ARS), =2

OH(Y,n)/dn)/(0H(Y,n)/0n)
AH(X,n)/H(X,n)

|| V=0, O:Cf? I=T'y; A=Ay P=dy

ARS — L3 (AdR),
n i

U, € {0} Cpe(OhET (I}
Ag € {A}; @, € {@}; Q= (T, 9,C,1)

Definations:

If ARS »1 = SUEis Non-Autonomous w.r.t. X,

under context ()

If 0 < ARS <1 = SUEis Partly Autonomous w.r.t. X,

under context )

If ARS =0 = SUFE is Completely Autonomous w.r.t. X,

under context ()

5.

SUMMARY

Metrics for system autonomy has been defined and

presented. Following the metrics, a specific measure for a

certain application can be derived directly. Associated with

each definition, the broad classification of the SUE was

defined.
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ABSTRACT

The topic of this discussion is an artificial (not
a natural human) intelligence measurement. It
would be better to call it an evaluation rather

KEYWORD: intelligence,
measurement, expert. additive.

ADDITIVE FORM.

Artificia Intelligence, like a human one, is
a composition of the different additive
abilities such as reasoning, learning,
decision-making, object recognition, and
so on. The multifunctional nature of
intelligence can be represented as a vector .

The intelligence measurement is not the
same as a multiobjective optimization of the
intelligence systems. There are many
different  methods of  optimization
(Preference  Structures, Compromise
Approach, L exicographic Ordering
Approach, Genetic Approach, Pareto
approach, etc.) [4,5, and other]. All of these
methods work with each function of the
intelligence separately and determine
preferences and a system’s rank, but not an
intelligence value. The additive function is
presented in the most of the research works
[2,3,6,7,9-14, and other].

The measurement is a process of assigning
numbers to the objects or events in
accordance with certain rules of the system.
The number assignment is possible just on
the scalar scale. There are three types of
axioms related to a measurement process:
identity axioms, rank axioms, additivity
axioms. These axioms determine four scale
levels: scale of names, range scale, interval
scale and ratio scale. The analyses of these
scales are done in [2]. Only additivity
axioms can be applied to the rea

than a measurement. The Additive Evaluation
Method is the only real method to make a
evauation of the vector value.

measurement. These axioms can be applied
just to thescalar scale, as it was mentioned
above. A vector doesn’'t meet these
conditions. Just, the weighted-sum approach
and utility functions can be used in this case
[3,7] as the method of multivariable scales
aggregation and converts vector into a
sufficient scalar.

The last question is how to determine the
value of weight. The most known and
usable method is an expert method, but
there are several analytical methods to find
out the value of thisfunction [2,6].

Opponents of these methods of the
aggregation function complain against the
application of a human expertise as a source
of information. They dispute an expert
ability to produce objective information.
Y es, a collective expertise has an element of
subjectivism but today we don’t have a
better way to measure a vector’s values to
make a comparison of two or more vectors'
values. Isthis, a wonderful fact in that we
use an expert’s intellectual ability in the
intelligence measurement? Certainly not,
because the intelligence can be measured by
the scale of the intelligence. Only a human
being has the best sense of the value of the
intelligence functions. Each separate
intelligence function can be measured by
appropriate methods but, as an integrated
value, intelligence has to be presented as a
scalar.

There are many different methods to
measure each separate intellectual ability.
For example, the value of the ability to
learn can be presented as a  ratio of an



increment of intelligence to an increment of
information. The number of iterations, or
the number of rules and trials (trial and
error method), or the entropy method, etc
can determine the value of information. So,
the learning ability is:

L = d(1)/d(I). (1)

The amount of new information available to
the different systems can change the
intelligence value of these systems.

A values of a separate intellectual abilities
(variables) don't give any ideas about
artificial  intelligence  integrated  value.
Aggregation of the separate variables can be
done on the base of the utility theory. The
utility of intelligent alternative can be
presented as[2]:

n
Ua=s U ©
i=1

where Ui isan utility of i-th basic
variable,
nisanumber of variables.

From (2) [2], wecan get the quality index
of j-th alternative (domain specific by design)
in nondimensional units

n
Q = S W; (R)*(Fi/Fi max) (3)
i=1

Where Wi (Fi) isaweight function of
i-th variable (Fi).

A set of variables hasto be named for

each problem separately.

Usually one of the variables is an
investment value of the j-th  aternative
(G). Inthiscase, equation (4) can be
rewritten as:

n-1
Q+(Cmax/ Wc) =S [ Wi (Fi)/Wc] *
i=1
Cinax * (Fi/Fimax )- G. (4)

This equation presents the evaluation of |-
th alternative measured in cost units

(dollars). Now we can use money as a real
universal scale of the measurement. Some
opponents can say, “it is immora”. A
measurement is not a moral category! G
can be added to the left and the right parts of
the equation (4). In thiscase we can get the
value of Q+(C max/ Wc) presented in dollar
units. This value includes only intelligence
variables and can be called the intelligence
value of thej-th

alternative

I

n-1
S [ Wi (Fi)/Wc] *
i=1

Crax* (FlFimax).  (5)

Where We is aweight function of
variable Cmax.

This is the direct way to calculate profit
(political factors are included). It is one
mor e reason to use the Utility Method and
scalar scale. No other method permits us to
get an intelligence evaluation in dollar
units. Each time in the shopping center,
when we are buying something we use ours
preferences and convert a vector value into a
scalar value presented in the dollar units.

The intelligence measurement is not a new
problem. The famous 1Q and WAIS-3 [8]
tests are the possible ways to make an
evaluation of the human intelligence. These
tests present an aggregated value of the
multifunctional intelligence and convert a
vector value into a scalar value.

The opponents to these testes pointed out to
the possible social problems bounded to
these methodic. In case of artificia
intelligence measurment this problem does
not make sense.

Conclusion.

The Additive Evaluation Method is the only
real method to make a evaluation of the
vector value. It can’t be write off from the
tools of intelligence value evaluation.
Artificial intelligence of the system should
be measured and presented as scalar.



This method isthe only one, which can gives
financial evaluation of artificial intelligence
application.

Contemporary artificial intelligence systems
are design as a domain-oriented systems.
Only the expert can determine the
importance of each intellectual function with
regard to the certain domains.
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ABSTRACT

This paper describes a pragmatic process measuring the “IQ” of
individual intelligent robots and groups of intelligent robots. We offer
definitions for the characterizations “intelligence” and “IQ.”> We
define metrics and submetrics for individual robots and the collective,
using the Analytic Hierarchy Process (AHP) to calculate weights for
the metrics and submetrics. They can then be used to evaluate
alternative technologies and systems for achieving individual and
collective intelligent behavior in robots.

The defined metrics and submetrics for individual robots include:

Intelligence (decomposed into the ability to make Correct
Decisions and Right Decisions, and to Leam)
Effectiveness (decomposed into the ability to achieve Objectives,
Goals, and Priorities)

U Efficiency (decomposed into Accuracy, Precision, Time
efficiency, Energy Efficiency, and Side Effects)

The defined metrics and submetrics for groups of robets include:

Command And Control (decomposed into Leadership,
Followership, and Efficiency)
Communications (decomposed into Message Initiation,
Transmission, Understanding, and Efficiency)

U  Effectiveness (decomposed into the ability to achieve Objectives,
Goals, and Priorities)

The values of the metrics are determined by experimenting with
designed robotic systems, in the context of a scenario, in a simulation
or field experiment. The weighted metrics can be combined to obtained
an “IQ” score for individuals or the collective.

Keywords: Intelligent Robots, Metrics, IQ, Intelligent Systems,
AHP, Robot Groups

1. Introduction

A little learning is a dangerous thing;
Drink deep, or taste not the Pierian
spring;

There shallow draughts intoxicate the
brain
And drinking largely sobers us again.
----- Alexander Pope

The brain is the most overrated organ.
----- Woody Allen

There are no satisfactory definitions of human intelligence,
S0 it is not surprising that are no generally accepted definitions
of machine intelligence either. One implicit definition, “the
ability to cope with the unexpected, and the ability to bring
about the unexpected,” is from a comment in the Economist
about the major attribute for a good U.S. president. Another
suitable definition of intelligence, is “the ability to make an
appropriate choice or decision.” The intelligence need not be
at the human level. The ability to make an appropriate choice
is common to all long-time survivors, including roaches and rats.
Appropriate, for organisms, usually means enhancing the ability
to reproduce, the primal goal in life. A chicken is an egg’s way
of making another egg. Appropriate intelligence for a robot
might mean the ability to accomplish its mission under a variety
of conditions.

It has been difficult to measure human intelligence in a
satisfactory way since the first “IQ” (Intelligence Quotient) tests
were developed at the start of the 20™ century. The tests, and
their interpretations, remain controversial. The measurement of
machine intelligence, however, is a somewhat easier task



primarily because (1) the functional domains of interest are more
narrowly defined than for people and (2) the underlying
mechanisms of machine intelligence are more accessible to
experimentation than the means of human intelligence.

When intelligent machines are designed for a limited set of
functions - such as performing search and rescue of people
trapped in collapsed buildings - they can be tested within that
small sphere of endeavor regardless of the intended level of their
intelligence (e.g., whether they are as intelligent as insects or
humans). In this sense, the robot’s IQ test is analogous to a
person’s aptitude test for a job or profession. More importantly:
for measuring the “IQ” of an intelligent machine, the tester has
access to the underlying intelligent control system. This allows
the intelligent control system to be connected to an avatar of the
machine in a simulated environment. The tester can know the
ground truth - have a “god’s-eye view” - of everything in the
environment, including every external manifestation of behavior
by the robot avatar as well as the control system’s every internal
state (including leamed and adaptive behavior). The intelligent
control system need not know - or care - that it is controlling an
avatar in a simulation and not a physical system in the real
world. Of course, the validity of the simulation is only as good
as the ability of the underlying model to replicate the real-world
environment of interest.

Intelligence can be decomposed into the ability to make a
correct decision (the optimum decision given complete
knowledge), a right decision (the optimum decision given
limited knowledge), and Jearning (the ability to adapt to the
environment, without necessarily making a decision which leads
immediately to altered, observable external behavior). While
intelligence is an important metric (measure of merit) for an
autonomous intelligent robot, there are two other key measures
(as per Peter Drucker): efficiency (a measure of how well the
autonomous robot does things right) and effectiveness (a
measure of how well the robot does the right thing). These
metrics take into account other system variables and
characteristics, including: energy expenditure, mobility,
reliability, stealthiness, etc. An intelligent robot with a failed
engine or damaged servo motors cannot move to accomplish its
mission no matter how well it has planned its path. Some
researchers are redefining human IQ to include a variety of
human talents, including physical skills. Indeed, some
anthropologists believe that human intelligence was quite
fragmented and narrowly focused task by task (as in Homo
neanderthalensis) until recently, when intelligence became
synthesized in Homo sapiens sapiens. Likewise, the “IQ” of an
intelligent robot might include the combined metrics of
cognitive and physical abilities: Intelligence, Effectiveness,
and Efficiency. Howeverthey are labeled or amalgamated, these
metrics can be quantified and used to test the performance - the
“IQ” - of any autonomous intelligent system.

1.1 Sundry Definitions Of Intelligence

"Civilization advances by extending the number of
important operations which we can perform without thinking.”
- Alfred North Whitchead

For organisms, intelligence is a pragmatic mechanism of
survival; and all measures of intelligence (whether for organism,
man or machine; whether genetically encoded, pre-programmed,
or learned) involve an ability to make appropriate selections
[1, 2], choices, or decisions. Human intelligence involves "the
degree to which an individual can successfully respond to new
situations or problems. It is based on the individual's knowledge
level and the ability to appropriately manipulate and reformulate
that knowledge (and incoming data) as required by the situation
or problem," [3]. Intelligence can be identified by an ability to
cope with the unexpected and an ability to bring about the
unexpected, abilities against which to judge presidents, among
other notables, over history [4]. The subjective word
"appropriate,” in relating intelligence to "appropriate” choice,
implies that a system can be intelligent only in relation to a
defined goal or environment.

Intelligence requires an ability to use information (where
information, according to Claude Shannon, is that which reduces
uncertainty) [2], and using information includes an ability to
detect new, non-chance associations [5]. Chen defines
intelligence (individual or organizational) "as the attainment of
relevant goals in specified contexts using appropriate means and
resulting in positive outcomes, " [6], which is the same as saying,
as above, "intelligence is the ability to make an appropriate
choice.”

A behaviorist would say, in the spirit of the Turing Test,
that if humans, machines, or organizations (collectives) behave
intelligently, then they are; if they manifest consciousness, then
they are conscious. Two parts of intelligence are: (1)
epistemological, in which the world is so represented that
solutions to problems follow from the facts expressed in the
representation; and (2) heuristic, in which there is the
mechanisms that solves the problem and selects actions on the
basis of information (most work in artificial intelligence is
devoted to the heuristic part) [7]. Entities can place different
emphasis on these two kinds of mechanisms of intelligence,
depending on the context.

In one view [8], attributes of systems with higher
intelligence include:

O mental attitude (beliefs, intentions, desires);

(1 learning (ability to acquire new knowledge);

O problem solving;

(J understanding (implications of knowledge);

1 planning and predicting consequences of actions, comparing



alternative actions;

knowing limits of knowledge and abilities;

drawing distinctions between similar situations;
synthesizing new concepts and ideas, acquiring and
employing analogies, originality;

generalizing;

perceiving and modeling the external world;
understanding and using language and symbolic tools.
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Some hold that the last attribute - language - is the prime
determinant of higher intelligence; that every representation of
knowledge is an interpretation, not decision-making or expertise
[9]. Symbolic manipulation [10] - communication - creates
second order reality; an advanced, intelligent system must be
able to perceive second order reality (the meaning and values
attributed to first order reality) as well as first order reality (the
reality accessible to perceptual consensus, physical reality) [11].

A machine with higher intelligence should be able to: adapt
(changing itself or the environment) for survival; reason about
its own organization, reasoning ability, and external domains;
plan internal activities (database searches, decision-making) and
external activities (sending messages, physical actions); select
among decision-making processes; make decisions using values
associated with possible actions; reason about its reasons for
taking actions; value itself to avoid changing itself in a harmful
way. Ideally, the system should be self-conscious as well as
self-adaptive [12].

The higher intelligent system should possess meta-
knowledge, i.e., it should have knowledge about what it knows
without having to search exhaustively. For example, the system
should know whether it has knowledge about grapefruit if asked
the size of grapefruit [13]. Knowledge includes representations
of facts, generalizations, and concepts, organized for future use
[5]. Knowledge of general truths does not require a special
metaphysically distinct ingredient in humans [14] - machines can
be designed to know such truths. "Knowledge is more than a
static encoding of facts; it also includes the ability to use those
facts in interacting with the world ... knowledge of something is
the ability to form a mental model that accurately represents the
thing as well as the actions that can be performed by it and on it.
Then by testing actions on the model, a person (or robot) can
predict what is likely to happen in the real world," [15].

"The use or handling of knowledge" is cognition [16], "an
intellectual process by which knowledge is gained about
perceptions or ideas,” [17]. An intelligent system can be
designed to learn ("any deliberate or directed change in the
knowledge structure of a system that allows it to perform better
on later repetitions" of a task [18]). But it would be difficult to
give it common sense, which involves a larger variety of
different types of knowledge than expertise (a large amount of
knowledge of relatively few varieties) [19]. A robot is
behaving consciously if it [20]:

receives information about its environment;

recalls and compares past experiences;

evaluates the quality of its experiences;

makes conceptual models of its environment;

projects consequences of alternative future actions;
chooses and implements actions which further its goals.
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By exhibiting purpose and intention, a machine would
behave as if it had free will and the ability to choose [21].

1.2 Group Intelligence

Organizations or collectives can become intelligent through
the emergent behavior of its organisms and machines.
“Emergent behavior involves the repetitive application of
seemingly simple rules that lead to complex overall behavior,”
[22]. The emergent behavior can be that of an ant and ant
colony, a person and an organization, or a robotic vehicle and a
combat platoon. Collective intelligence in insect societies,
especially for certain of the ants, bees, and termites, is
reasonably understood. “Higher forms of intelligence arise from
the synchronized interaction of simpler units of intelligence,”
[23]. This is true as well of "higher" forms of life, such as
dolphins, wolves, apes, and humans. Social intelligence allows
an individual organism to “analyze and respond correctly
(intelligently) to possible behavioral responses of other members
of the group,” [24]. Collective intelligence, an advanced form
of intelligence, “involves group intelligence in which individuals
submerge their individual identity” [24] to the group's responses
to the threats and opportunities in the environment.
Communication among individuals is essential for collective
intelligence, whether by pheromone, vision, sound, touch, or
email. Information technology is now affecting the collective
intelligence and evolution of the human species, possible leading
to the emergence of a global intelligence, a system of individual
and collective humans and machines [25]. But, as always, the
essence of intelligent behavior is control - at least self~control.

There have been a number of programs attempting to
develop cooperative mobile robots, and over 200 papers have
been published concerning mobile cooperative robots [26]. Cao,
Fukunaga, and Kahng [27], on which much of the following
discussion of cooperative behavior is based, define collective
behavior generically as “any behavior of agents in a system
having more than one agent,” while cooperative behavior is
defined as “a subclass of collective behavior that is characterized
by cooperation.” Cooperation should lead to the enhanced
performance of the collective over that of the simple aggregation
of individuals (i.e., the whole should be greater than the sum of
its parts). Cao et al. cite the following definitions of cooperative
behavior (from various sources):

O To associate with another or others for mutual, often
economic, benefit.



Q Joint collaborative behavior that is directed toward some

goal in which there is a common interest or reward.

A form of interaction, usually based on communication.

Joining together for doing something that creates a

progressive result, such as increased performance or saving

time.

(L Given some task specified by a designer, a multiple robot
system displays cooperative behavior if, due to some
underlying mechanism (i.e., the mechanism of cooperation)
there is an increase in the total utility of the system.
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As posed by Cao et al., the fundamental issue is: given a
group of robots, an environment, and a task, how should
cooperative behavior arise?

The architecture of a computing system is that part which
remains unchanged unless an external agent changes it. The
group architecture of a cooperative system is the infrastructure
on which collective behaviors are implemented and determines
the abilities and constraints of the system. The group
architecture for cooperative robots includes such considerations
as: robot heterogeneity and homogeneity, the ability of each
robot to recognize and model other robots, and communications.
Also, the architecture must be able to avoid conflicts among
robots for resources, such as paths through the environment,
goal objects in the environment, and communications
bandwidth.

In creating a group architecture, there are a number of
alternative design decisions. The architecture may be
centralized or decentralized. Centralized architectures are
characterized by a single control agent. Decentralized
architectures, which are prevalent, may be either distributed or
hierarchical. In the former, all agents are equal with respect to
control, while the latter are locally centralized. Decentralized
architectures may lead to emergent properties of systems, such
as intelligence or self-organization. Their inherent advantages
over centralized architectures include fault tolerance, natural
exploitation of parallel processes, reliability, and scalability.
Most robot architectures hybrid, where, for example, a central
planner exerts high-level control over mostly autonomous
agents. A group of robots is homogeneous if the capabilities of
the individual robots are identical; otherwise they are
heterogeneous (forming a more complex system).

Cooperation among robots can arise from eusocial behavior
(as opposed to explicit cooperative behavior) which results from
the behavior of individuals and not necessarily an a priori effort
at cooperation (e.g., ants and bees are eusocial). There are many
sorts of self-organizing systems (in which there has been much
research), but especially with respect to biological systems,
whether individual organisms (in which the individuals parts are
self-organizing) or social groups (human or otherwise). The
aggregation of relatively limited individuals leads to the
collective’s more capable intelligence (this is true of human

society as well). Individual robots that are selfish and utility-
driven, but must cooperate in order to survive, will display
emergent cooperative behavior. Explicit cooperation, as among
humans, can be driven by a desire to maximize individual utility,
so there are economic and game-theoretic approaches to
examining cooperation.

It is difficult for human designers to account for the
multiplicity of control variables and contingencies to achieve
cooperative behavior in robots. It is easier to design the robots
so that they learn to cooperated and adapt to their environment.
A number of techniques are being developed for this approach,
including the use of neural networks and genetic algorithms.

The robotic group may employ various types of
communications processes for inter-agent interaction, including,
in one taxonomy: interaction by means of the environment;
interaction by sensing; interaction by explicit communications.
The simplest, most limited type of interaction occurs when the
environment itself is the communications medium, providing the
equivalent of a shared memory among a group of robots. There
is no explicit communication or interaction among the
individuals.

Another form of group communications occurs when
individuals sense and perceive one another without engaging in
explicit communications. Using a suitable sensor (e.g., vision,
acoustic, chemical, touch), the individuals must be able to
distinguish members of the group from other entities in the
environment. Resulting collective behavior includes flocking
and pattern formation relative to neighboring individuals.

Higher-order tactical group behavior generally requires
explicit communication among individuals, which can be
directed (to known recipients) or broadcast (to unknown
recipients). Architectures that enable this type of
communication resemble communications networks, and
communications protocols are necessary for inter-robot
communications. The message carrier can consist of various
portions of the electromagnetic spectrum (e.g., radio frequency,
microwave, optical, infrared) or other transmission mechanisms
(e.g., acoustic, chemical).

In order to function relative to others in a group, or with
respect to predators (threats) and prey (targets), individual
organisms (or robots) must be able to model the intentions,
beliefs, actions, capabilities, and states of those others. The
ability of individuals to model others in a group reduces the need
for communications; it encompasses implicit communications
via the environment and perception and includes representations
of other individuals which can be used to make inferences about
the actions of those individuals.

There are many prospective means of achieving cooperative
behavior among robots. The most direct is to explicitly program



the desired behavior. This is difficult and tedious in that the
programmer must a priori account for all possible contingencies.
Other methods are more promising, including biological (e..g,
social insects) behavioral approaches, task decomposition and
allocation approaches, game-theoretic approaches, machine
learning approaches, and approaches based on cooperation as an
emergent property of complex group dynamics. Geometric
approaches include multi-agent path planning, moving to
formation, and pattern generation.

For most military applications, explicit leader-follower
relationships are important, especially where robotic forces will
be integrated with conventional forces. These roles and abilities
may exist in all of the robots, where leaders are anointed - or
emerge - based on circumstance (as is often the case for
people). Or leaders may be specially trained as such.

For example, group behavior to achieve coordinated
movement in the world, such as path planning, can be
centralized (with a leader or universal path planner making
decisions) or distributed (with individual agents planning and
adjusting their paths). They may be hybrids, combining on-line,
off-line, centralized, and decentralized elements. Planning
systems may take into account all robots, or plan the path of
each one independently. Factors include dynamically-varying
global and individual priorities, environmental constraints and
obstacles, and the allocation of space-time resources. Conflicts
may be resolved by a central manager or negotiated among
individuals.

2.0 Evaluation Process

In order to evaluate the performance of an intelligent robot
(or group of robots) we can employ a pragmatic, behaviorally-
based, teleological, and functional approach to measuring its
“I1Q” as follows:

[ Define the purpose or mission or objectives of the robot (or
group of robots)

[ Derive the worth criteria by which the robot’s performance
may be assessed

U Organize and integrate the worth criteria into a consistent
assessment structure

1 The assessment structure employs suitable variables
(endogenous, status, and exogenous), metrics and
submetrics, a means of weighting or ordering the metrics
and submetrics, and a means of evaluating performance
against the ordered metrics and submetrics.

(J  Measure the performance of the robot or group of robots, in
the context of the desired scenario and environment, in a
simulation or field exercise, calculating “IQ” from the
evaluated, weighted metrics and submetrics.

The evaluation process is illustrated in Figure 1.

Figure 1. Evaluation Process
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The worth criteria are specified as metrics (e.g., worth
criteria which are measurable either objectively or subjectively),
which are commonly labeled as measures of merit, measures of
effectiveness, measures of efficiency, measures of performance,
and so forth. Measures Of Merit (MOM) are often the worth
criteria associated with the system as a whole, while Measures
Of Performance (MOP) are worth criteria often associated with
the system’s subsystems (which may descend to the n™
subsystem level of the system). Using these labels, the MOP are
below the MOM in a hierarchy of worth criteria, with the MOM
comprising the MOP and being a function of the MOP values.
For example, a robot’s MOP may be “Time Efficiency,” and
this, along with other MOP, then compose the MOM “Vehicle
Efficiency.”

The objectives, for example, may be to demonstrate the
intelligent and cooperative behavior on the part of multiple
autonomous robots or robotic vehicles in the context of
scenarios relevant to a class of military missions. The primary
objectives of achieving (1) intelligent behavior, and (2)
cooperative behavior, lead to the definition of worth criteria
focused on two system levels: (1) the individual robot or robotic
vehicle as a system, and (2) the group of robots or robotic
vehicles as a system (i.e., a system of systems).



2.1 Procedural Difficulties

The evaluation procedure is a formal procedure, as opposed
to an observer’s using purely subjective judgment and intuition
to pronounce the performance of the system to be a success or
failure. However, formal decision-making procedures do not
preclude (and often require) the use of subjective judgment.
Subjective judgment must be used in developing worth criteria
and assigning them to the various performance consequences, as
well as in deriving relative weights for the worth criteria (i.e.,
trading off worth among the various criteria). But if subjective
Jjudgment is made explicit and logically consistent, then it can be
examined and questioned by all interested parties. The result is
more likely to be free of incorrect or poorly formulated
assumptions.

Difficulties with the procedure include mapping from one
to many from the set of behaviors to the set of metrics, i.e.,
relating a single performance consequence to several worth
criteria. For example, if a robotic vehicle correctly senses and
notes an enemy mine, this event could be relevant to the vehicle
metrics for Intelligence and Effectiveness. Conversely, there can
be a mapping from many to one, i.e., many performance criteria
may be related to a single worth criteria. For example, behavior
such as finding mines, avoiding rocks, and finding survivors,
among others, contribute to the vehicle’s Effectiveness.

Other difficulties include the existence of complex patterns
of interaction among various aspects of performance and
complex patterns of interdependence among subjective notions
of worth (such as distinguishing among Intelligence,
Effectiveness, and Efficiency; or among Command & Control,
Communications, and Effectiveness. It can be difficult to
distinguish between interactions among performance
consequences (i.e., system behavior), which is a result of
physical phenomena, and interdependence among worth criteria
imposed by the analyst, which is a result of psychological
phenomena. Nevertheless, an evaluation process that combines
explicit subjectivity with objectivity is usually better than an
evaluation process employing only implicit subjectivity. But
“any assessment procedure, to generate comprehensible results,
must stipulate very clearly whose point of view is being taken
and whose values are to prevail,” [28].

2.2 Worth

Underlying the evaluation procedure is the concept of
worth, which may be defined as the “conscious perceptions held
by an individual relating to his underlying feelings of preference,
aversion, and indifference. This includes not only direct
awareness of the feelings themselves, but also the entire range of
cognitive elements supporting such feelings. Conscious
rationalizations, justifications, and explanations would all be
included in the meaning of worth,” [28]. Worth is a function of

an object, the situation in which the object is placed, and the
person evaluating the object. Notions of worth are formulated
by people observing external objects and they may be projected
onto those objects; but worth remains in the subjective minds of
the observers. Worth judgements are neither true nor false; they
exist in-the minds of human beings.

Ideally, the metrics for intelligent systems should have
certain properties. They should be complete and exhaustive in
that all important performance objectives should be represented
by the list of measures. They should be mutually exclusive in
that no listed measure should encompass any other measure.
The metrics should be restricted to performance objectives of the
highest importance, derivable from lower criteria in a worth
hierarchy. They should be relatively independent in that
decision-makers should be willing to obtain additional
satisfaction on one measure in exchange for reduced satisfaction
on another measure at a rate relatively independent of the level
of satisfaction already attained on each.

The example metrics selected herein for the intelligent
systems intersect somewhat and are therefore not completely
mutually exclusive, but their exclusivity is sufficient to provide
a reasonable evaluation of system performance.

The lowest level criteria in a worth hierarchy should be
represented by a simple performance measure. This connects the
criteria hierarchy, which emanates from the subjective minds of
the decision-makers, with the outer world of physical “reality.”
For example, the “Number of Targets Detected Per Unit Time”
would be a lowest level worth criterion for the higher level
criterion “Time Efficiency,” which, in turn, would contribute to
the evaluation for the higher level worth criterion “Mission
Efficiency.” The weighted worth scores may be aggregated to
calculate an overall index of worth, i.e., an overall determination
of success or failure for the intelligent system.

2.3 Variables

The variables and their relationships symbolically represent
the operation of the intelligent system, in the context of the
environment, in computer simulations or field exercises of
missions for the intelligent system. Figure 2 shows the
relationships among the variables and the metrics. Some
(although not all) of the system variables are relevant to the
mission and group variables. Each of these sets of variables are
aggregated, through the application of various algorithms, into
metrics; these, in turn, are aggregated, through the application of
more algorithms, into a scoring of success or failure. The values
of the metrics, i.e., their quantification as a result of simulation
or field exercises, determine the success or failure of the exercise
of the system (against a priori criteria). In each case, the
expected values (e.g., the martini glass in the figure) are
compared with the measured values (e.g., the coffee cup in the



figure) for the individual and group metrics and submetrics.
Success or failure (e.g., of the mission) can depend on the
individual, the group, or both.

Figure 2. Variables And Metrics
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A convenient taxonomy for the intelligent system variables
is illustrated in Figure 3. Exogenous variables are independent,
or input, variables which are generally predetermined and
independent of the system. They act on the system but are not
acted on by the system. Exogenous variables may be either
controllable or non-controllable. Controllable (or instrumental)
exogenous variables can be controlled or manipulated by the
decision-makers of the system. Non-controllable exogenous
variables are generated by the environment in which the system
exists and behaves (and not by the system itself or its decision
makers). For example, the value of “Mission Timeliness” is a
controllable variable, while “Duration (Time) Of Rain” is a non-
controllable variable. Non-controllable variables are associated
with the individual level; there are none at the mission/group
level.

The status variables describe the state of the system. They
interact with both exogenous and endogenous variables
according to the functional relationships of the system. The
value of the status variable may depend on an exogenous or
endogenous variable in a preceding time period; when the input

Figure 3. Types Of Variables
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is from a portion of a variable's own output from a previous
period, a feedback loop exists. “Remaining Mission Time” and
“Number Of Objectives Achieved” are examples of status
variables.

Endogenous variables are dependent, or output, variables of
the system, generated from the interaction of the system's
exogenous and status variables according to the system's
operating characteristics. The “Actual Time To Accomplish A
Mission” is an example of an endogenous variable.

Whether a particular variable is an exogenous, status or
endogenous variable depends on the purpose or nature of the
system's processes. For example, “Target Location” may be an
exogenous variable if it is specified to the group a priori (as for
a fixed target); it may be a status variable if, as a relative
location, it is periodically updated as the group moves; and it
may be an endogenous variable if it is computed by the group on
the basis of sensor inputs.

An example of the use of the variables to derive metrics is
given in Figure 4. Variables of different types are combined by
using an algorithm to obtain a measure of performance: the
exogenous variable “Interim Objective Type” (such as a
rendezvous point); the status variable “Time Of Interim
Objective Accomplishment;” endogenous variable “New
Objective Selected” (by the leader vehicle); the status variable
“Number Of Objectives” (of this type accomplished); and the



status variable “Elapsed Mission Time.” The MOP formed from
these variables is the “Number Of Objectives Of Type j (such as
rendezvous points) Accomplished (by the group) Per Unit
Time.” The algorithm in this example is simply the sum of the
objectives accomplished divided by the mission time. This
MOP, along with others (such as “Energy Expended Per
Objective Accomplished”), might be combined into a top level
metric called “Mission Efficiency.”

Figure 4. Example: Variables
Transformed To Metrics
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2.4 Metrics For Individuals And The Collective

We define six metrics for intelligent systems for this
example. The metrics are not completely mutually exclusive.
But they do emphasize three behavioral aspects of an
autonomous intelligent system and three behavioral aspects of a
group of such systems. Taken together, they provide a summary
quantification of how successfully the individual and the
aggregate - the collective - perform in the context of their
environment and mission.

2.4.1 Individual Metrics And MOP

The three selected top-level metrics are: Intelligence,
Efficiency, and Effectiveness, as shown in Figure 5.

Figure 5. Metrics And Submetrics For
Individuals

INTELLIGENCE | EFFECTIVEMESS
SZ Accuracy
Correct Objectives
Decision Accomplished
v
(” \
Precision
\/I I\J 7
Right Decision g —_—
g Accomplished
Time
Efficiency
\p—
\Z N L J
. Priorities Energy
Learning Accomplished Efficiency
\
v
Side Effects
\——

Intelligence is defined here functionally as the ability of the
system to make an appropriate choice - an appropriate decision.
Because a value is the relative worth of a thing, the basis upon
one makes a choice, intelligence is related to values; what is
“appropriate” is situation-dependent. In the case of intelligent
systems for military-type missions, appropriate choices are those
that contribute to the success of the mission, or are perceived by
the system to contribute to the success of the mission in the
context of the information it possesses.

Information provided by sensors and processed by an
intelligent control system can alter the intelligent machine’s
world model - and learning occurs. The ability to learn, based
on experience, is one metric for intelligence. There are two
kinds of acceptable decisions that the intelligent system can
make: “correct” and “right.” A correct decision is the optimum
decision the system can make given a meta-view or complete
knowledge (ground truth or the "god's-eye" view). The right
decision is the optimum decision the vehicle can make given its
“real” and limited knowledge. The intelligent machine (or a
person) may do well in making correct decisions despite limited



knowledge; this kind of decision-making is a metric that
evaluates performance in an absolute frame of reference. It is
difficult or impossible for mortals to acquire the “god's-eye”
view in real life, but it is possible to have such a view in limited
scenarios and to evaluate the performance of men or machines
against such a standard.

In Figure 5 the metric “Intelligence” is decomposed into the
submetrics (or MOP): “Correct Decision,” “Right Decision,”
and “Learning.” “Correct Decision” evaluates the machine’s
intelligence against absolute performance standards. “Right
Decision” evaluates the machine’s intelligence against a relative
standard which discounts the limitations of the machine’s
sensors and world model. The “Learning” MOP measures the
ability of the vehicle to adapt to its environment, without
necessarily making a decision that leads immediately to altered
external behavior.

For example, an autonomous robotic vehicle might sense a
terrain feature it that doesn't appear in the terrain map stored in
its world model. Appropriate learning would occur if the
vehicle were to alter its terrain map to include the feature; the
vehicle need not have altered its path or motion in order to
indicate learning - the change in the world model would be
sufficient to indicate learning. If the vehicle were to select a
path to its destination that complied with all of its mission
criteria, but was then ambushed and destroyed by a hidden
enemy about which it could not have known, the vehicle would
have made a right decision in its path selection, but not a correct
decision.

The metric “Effectiveness” in Figure 5 is decomposed into
the submetrics or MOP: “Objectives Accomplished,” “Goals
Accomplished,” and “Priorities Accomplished.” “Effectiveness”
is the “bottom line” measure of merit, the measure of whether
the mission goal and its interim objectives were achieved by the
vehicle. Ordinarily, this might be the main metric, the one with
the greatest importance. However, developmental or prototype
systems may have, for example, various mechanical-type
subsystems that are not of operational quality. It is not
absolutely critical to the development of intelligent systems that
prototype robotic vehicles accomplish its goals and objectives
with overwhelming panache. The display of intelligence is more
important in a Phase I effort than the success or failure of the
mission - which may depend on the success or failure of a
prosaic propulsion system. In the end, of course, with a fielded
system, “Effectiveness” is a key meitric. Ineffective intelligence
is barren, in machines or people.

The tactical “Objectives Accomplished” is an MOP based
onthe intermediate objectives the intelligent machine is assigned
to accomplish on its way to the ultimate mission goal, which
accomplishment is accounted for in the MOP “Goals
Accomplished.” The final MOP for “Effectiveness” is the
determination of the “Priorities Accomplished.” The priorities

are those set in the value-driven logic of the robotic platform,
i.e., the relative importance of survival, energy conservation,
timeliness, etc. The robotic platform may be able to accomplish
most of its intermediate objectives, yet fail at its ultimate goal
(just like people often do), or it may achieve its ultimate goal
while failing at its intermediate objectives (e.g., getting the lucky
break). Also, it may maintain or scramble its priorities while
succeeding or failing at accomplishing its objectives and goal.
The MOP for “Effectiveness” are thus sufficiently mutually
exclusive to highlight different aspects of the robotic vehicle's
behavioral and mission performance.

The final metric, that of “Efficiency,” is the least important
in a development program because a prototype platform’s
mechanical performance is likely to be inferior to that required
for an operational platform. However, it is reasonable to
account for this behavior in the testbed and include it in the final
metric score. For an operational system, “Efficiency” becomes
more important , but not usually as important as “Effectiveness.”

“Efficiency” is a measure of how well the intelligent system
performs while attempting to accomplish its objectives and goal,
and how well it conserves resources. “Effectiveness” measures
the ability to accomplish the objectives and goal assigned by the
mission. The vehicle (like a person) may be extremely efficient
and yet completely ineffective (such as working economically
toward the wrong goal); or it may be inefficient, yet able to
accomplish its objectives and goal. “Effectiveness” and
“Efficiency” are not completely independent, but they are
sufficiently different to characterize different aspects of an
intetligent system.

There are four MOPs for the metric “Efficiency,” as shown
in Figure 5: “Accuracy,” “Precision,” “Time Efficiency,”
“Energy Efficiency,” and “Unexpected Adverse Side Effects.”

“Accuracy” refers to the robot's ability to achieve its desired
states (position, speed, etc.) without significant systematic
errors. “Precision” refers to the vehicle's ability to achieve its
desired states without significant random errors. “Time
Efficiency” measures the accomplishment of objectives and goal
per unit time (such as the number of targets detected per minute,
or the number of survivors retrieved per hour, the area searched
per hour, etc.). “Energy Efficiency” likewise measures the
accomplishment of objectives and goal per unit of energy
expended (such as the number of mines detected per joule, etc.).
The “Unexpected Adverse Side Effects” refer to adverse
behavior displayed by the robot due to bugs, glitches, or errors
in the vehicle. Such behavior may not prevent the vehicle from
accomplishing its mission (or even detract much from its
accuracy or precision), but it could reduce efficiency. For
example, every 100 meters the robot might inexplicably stop for
ten seconds; or it might mistake a wall for an entranceway and
try to enter.



Accuracy and Precision are basic to efficient performance
and should be weighted somewhat higher than Time and Energy
Efficiency. Side Effects, while disturbing and potentially
harmful to the success of the mission (or the continuation of a
development program itself) is not of high importance in a Phase
I development effort; the causes of eccentric behavior
presumably can be found and corrected. The existence of
peculiar vehicle bugs will become more worrisome as intelligent
machines become operational.

2.4.2 Group Metrics And MOP

The three metrics selected for the group or mission level
are: “Command and Control” (C?), “Communications,” and
“Effectiveness,” as shown in Figure 6.

Figure 6. Metrics And Submetrics For Groups
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“Command and Control” (taken as a single measure) refer
to the ability of the robots to exhibit cooperative behavior within
a leadership structure. One major system attribute - intelligence
- is measured from individual robot or platform behavior. The
other major system attribute - cooperation - requires more than
one platform for measurement; it is measured from the
interactions of multiple intelligent systems. We assume an
explicit means of achieving robotic group behavior for the
applications of interest (e.g., leader-follower architecture), rather
than implicit means (e.g., eusocial architecture).

The multiple systems can be designed to interact in many
different ways, just as people in various societies and institutions
organize themselves in different ways. In particular, the
organizational forms needed to achieve organizational goals can
range over a spectrum of types, from collegial to democratic to
autocratic to - and so on. The organizational form selected, for
example, may be military-autocratic where some robots are
leaders and others subordinates, all in a hierarchy of authority
and power. (Authority is the right to act while power is the
ability to act).

In Figure 6 the metric “Command and Control” is
decomposed into the MOP: “Leadership,” “Followership,” and
“C? Efficiency.” While cooperation may seem too weak a
characterization for the relationship between a military leader
and his (its) subordinates, leadership always involves some form
of cooperation from followers - even from those under duress.

The definition of “leadership,” like that of “intelligence,” is
vague. Some of the definitions of leadership include [29]:

O “Leadership is the exercise of authority and the making of
decisions,” (Dubin, 1951);

1 “Leadership is the initiation of acts that result in a consistent
pattern of group interaction directed toward the solution of
mutual problems,” (Hemphill, 1954);

O “The leader is one who succeeds in getting others to follow
him,” (Crowly, 1928);

[ “Leadership is the process of influencing group activities
toward goal setting and goal achievement,” (Stogdill, 1948);

0 Leadership is “the ability to handle men so as to achieve the
most with the least friction and greatest cooperation,”
(Munson, 1921);

(1 Leadership is “the process by which an agent induces a
subordinate to behave in a desired manner,” (Bennis, 1959);

[ Leadership is “the activity of persuading people to
cooperate in the achievement of a common objective,”
(Koontz and O'Donnell, 1955).

An ideal form of leadership might be to motivate others
such that they perceive themselves to be self-motivated, an
invisible, unobtrusive form of leadership. Then, there is the
eusocial leaderless leadership, a commonality of purpose arising
from the dynamics of group interactions, as exhibited by ants.
Unlike human organizations, robotic systems might well be able
to accomplish invisible or leaderless leadership.

Effective leadership can be measured by how well the
leader's group performs its assigned functions in terms of group
productivity and group satisfaction, although in the case of the
robotic collective, group satisfaction is not a concern. In human
organizations, the effective leader possesses power which
originates from his position, from higher authority, and from his
traits, abilities and behaviors. The followers of the leader also
have traits, abilities and behaviors which contribute to the



successful accomplishment of the mission. Between the leader
and the followers are their relationships and the task structure.
Technology impacts on the triad of leader, followers, and their
relationship in various ways; communications technology, for
example, can alter the leader's power or facilitate orders to
subordinates.

For a robotic collective, there will also be leadership
potential (programmed algorithms), behavior (decisions based
on value-driven logic), leader-follower relations (inter-vehicle
protocols), and task structure (the degree of control and the
tradeoff of centralization versus decentralization). The leader
robot will take the initiative in making decisions, select tactics
and maneuvers, and issue appropriate commands to the follower
robot.

There can be no leader without a follower, and there can be
no leadership without followership. So, for example, the
followership of one robot vehicle will help define the leadership
of another robotic vehicle. The subordinate vehicle will respond
to commands appropriately, providing feedback to the command
vehicle and behaving with restraint (an aspect of control). The
subordinate vehicle will take command, transforming itself into
the leader vehicle, when the latter cannot function properly
because it has been damaged or destroyed. (In the case of two
vehicles, the surviving follower becomes the "leader” in the
nominal sense of performing the mission tasks of the leader
vehicle without leading a subordinate).

The link between the leader and followers is achieved
through communication. Figure 7 illustrates the communication
process. One of at least two or more people or machines
perceive a need, problem, or situation that requires the
transmission of information. The communication initiator - the
sender - has an objective in sending the information. The sender
formulates a message that contains the information reflecting the
intentions of the sender. (Information, in a quantitative context,
is a measure of one's freedom of choice when one selects a
message from an available set. In this entropic view, the
message that water is wet, to one who knows this fact, would not
contain information. If information is related to choice, and
values are the bases of choice, and intelligence is the ability to
make appropriate choices, then information, values, and
intelligence are related.) The sender selects a channel or
medium over which to send the message, encodes the message
into the appropriate language and format, and transmits the
message over the channel. The recipient of the message receives
and decodes it..

For communication to have taken place, the recipient must
understand the message, i.e., must extract the information the
sender intended. Ideally, the recipient provides feedback to the
sender so that the latter knows that the information has been
received and understood. Sometimes the feedback consists of the
sender's observing subsequent behavior of the recipient that

conforms to the objectives of the sender.

Figure 7. Communications
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Any step of the communication process can be disrupted by
noise. Noise may originate in the sender and disrupt the internal
formulation or encoding of the message, or it may originate in
the environment and disrupt the transmission of the message, or
it may arise in the recipient and discombobulate the decoding or
understanding of the message.

NOise

The communication process, as outlined Figure 7, is true
for communication between people (using verbal, written, and
other means) or robotic vehicles (using radio frequency,
acoustic, optical, and other means).

The “Communication” metric is decomposed into four
MOP: “Message Initiation”, “Message Transmission”, “Message
Efficiency”, and “Message Understanding”. The MOP

correspond to the communications process as outlined.

The initiation and understanding of messages are more
important in a Phase I development effort than the performance
of the transmission mechanism (radio frequency or acoustic), or
the efficiency of the message protocol (length and number of
messages needed to convey a quantity of information).
Acceptable performance might consist of appropriate messages



being initiated and a high percentage understood, given
reception (but many messages might not be received to due
noise or inadequacies in the transmission system).

The metric “Effectiveness” in Figure 6 is decomposed into
the MOP: “Objectives Accomplished,” “Goals Accomplished,”
and “Priorities Accomplished.” Effectiveness, as noted
previously, is the bottom line metric, the measure of whether the
mission goal and its interim objectives were achieved by the
robotic vehicles. Ordinarily, this might be the main metric, the
one with the greatest importance. However, a developmental
robot may be a testbed with mechanical systems that are not of
operational quality. As we mentioned previously, it is not
absolutely critical to the success of a development program that
the leader and follower vehicles accomplish their goals and
objectives with overwhelming panache. The display of C*
ability at the mission/group level (and intelligence at the
individual level) is a more important accomplishment during
development than the success or failure of the mission.

The tactical “Objectives Accomplished” is an MOP based
on the intermediate objectives the robotic vehicles are assigned
to accomplish on their way to the ultimate mission goal, which
accomplishment is accounted for in the MOP “Goals
Accomplished.” The final MOP for “Effectiveness” is the
determination of the “Priorities Accomplished.” The priorities
are those set in the value-driven logic ( e.g., the relative
importance of survival, energy conservation, timeliness, etc.).

The robotic vehicles may be able to accomplish most of
their intermediate objectives, yet fail at their ultimate goal (just
like people), or they may achieve their ultimate goal while
failing at their intermediate objectives. Also, they may maintain
or scramble their priorities while succeeding or failing at
accomplishing their objectives and goal. The MOP for
Effectiveness are thus sufficiently mutually exclusive to
highlight different aspects of the leader-follower behavior and
mission performance.

2.5 Metrics And The Analytic Hierarchy Process

There are multi-criteria decision-making techniques which
can be used to define and weight metrics and evaluate alternative
systems and technology for prospective intelligent robots. One
such technique, the Analytic Hierarchy Process (AHP), is
gaining popularity in the defense community (U.S. and Canada)
for aiding in the evaluation of weapons systems, and there are
more than 600 papers and books describing the theory and
applications of the AHP. The mathematics underlying the AHP
is largely matrix algebra wherein one solves for certain
eigenvalues [30, 31, 32].

Making decisions about complex problems involving
conflicting criteria and several alternatives is not a simple

process. Psychological research has demonstrated that the
human mind is limited in the number of items it can store in
short-term memory. The AHP enables the decision-maker to
transcend such limitations by visually structuring a complex
problem in the form of a hierarchy. Each factor and alternative
can be identified and evaluated with respect to other related
factors. The AHP makes it possible to look at the elements of a
problem in isolation: one element compared against another with
respect to a single criterion. The decision process reduced to its
simplest terms - pairwise comparisons. This ability to structure
a complex problem, and then focus attention on individual
components, improves decision-making. All judgements are
synthesized into a unified whole in which the alternatives are
clearly prioritized from best to worst.

For example, one might look at two robots and note
(quantitatively) that the first weighs more than the second. In
addition to observing this, we have an ability (subjectively) to
say that the first robot is much more flexible (i.e., has an ability
to perform more or varied functions) than the second, or just
moderately more flexible, or that the flexibility of the two robots
is the same. Or we might quantify the flexibility in terms of a
measurable quantity (such as the number of defined functions
performed), for example. A multiplicity of such pairwise
comparisons of alternatives (or the use of objective data, where
available), against various criteria, build a metric that can be
used to make judgments or decisions that are more objective and
rational than they would be otherwise.

We first performed this kind of analysis for determining
robotic “IQ” for autonomous underwater vehicles in 1985 [32].
This work was updated for robotic ground vehicles in 2000 [33].
The results of this analysis is summarized below.

2.6 Example Analysis

As an example from longer lists [33], exogenous variables
for individual robots include: coordinates (starting and final);
maximum detection range (passive and active); terrain profile;
object (size, speed, acceleration, coordinates; rendezvous
coordinates; etc. Sample status variables include: vehicle speed
(linear and angular); vehicle position; vehicle bearing; sensor
status; power status; etc. Sample endogenous variables include:
probability of bring detected (actively and passively); risk of
known and unknown sensors along path; estimated path length;
computed position of object sensed actively; computed object
speed; etc.

Example exogenous variables for robot groups include:
mission type; mission values; desired vehicle spacing;
designated group leader; primary mission objective types
(defenses, targets, vehicles, etc.); abort criteria; group clock
standard; etc. Sample group status variables include: groups
destroyed; vehicles per group destroyed; vehicles absent from



rendezvous; elapsed/remaining mission time; etc. Sample group
endogenous variables include: risk of active detection fo group;
risk of passive detection for group; number of objects of each
type sensed by group; best computed position of object sensed
actively by group; etc.

For the AHP Goal to “Evaluate Individual Robot 1Q,” the
values of the weights for the metrics and submetrics, previously
described, were calculated with the following results:

* Intelligence = 0.54

1 Correct Decision = 0.10
1 Right Decision = 0.27
O Leaming =0.17

* Effectiveness = 0.30

U Objectives Accomplished = 0.15
0 Goals Accomplished = 0.06

L Priorities Accomplished = 0.09

* Efficiency = 0.16
Accuracy = 0.05
Precision = 0.05

Time Efficiency = 0.03
Energy Efficiency = 0.02
Side Effects = 0.01

ocoooQo

For the AHP Goal to “Evaluate Group Robot 1Q,” the
values of the weights for the metrics and submetrics, previously
described, were calculated with the following results:

* Command & Control = 0.54
 Leadership = 0.23

L Followership = 0.23

(1 Efficiency = 0.08

* Communications = 0.16

U Message Initiation = 0.06

[J Message Transmission = 0.03
U Message Understanding = 0.06
1 Efficiency = 0.01

* Effectiveness = 0.3

U Goals Accomplished = 0.06

L} Objectives Accomplished = 0.15
O Priorities Accomplished = 0.09

While there are many ways to evaluate the “IQ” of a robot
and groups of robots, a simple (vector) method is to add the
products of the values obtained for the individual and group
metrics and their associated weights:

[1] Total Score = z WiMi

Where W =i" Weight
M = i* Measure (Score)

The scores of each metric are obtained from measuring the
submetrics or MOPs in a series of experiments, in a simulation
or in the field. Each individual and group metric requires a
defined process for obtaining its score, which is then aggregated
into the Total Score (or “IQ”). There are many possible
approaches or algorithms, an examples are given in [33]. For
example, to evaluate the group Communications metric one
might define:

3
[21 SC=) Wik + W4E

i=1
Where:

* SC = Score For Communications

* R, =NMV/TMI = Message Initiation Ratio

* R, = NESR/TMI = Transmission Ratio

* R, = NMU/NESR = Understanding Ratio

* NMI = Number Of Right Messages Initiated

* TMI = Total Number Of Messages Initiated

* NESR = No. Messages Actually Encoded, Sent, And
Received

* NMU = No. Of Messages Rightly Understood By Recipient
* W, = Weight of i MOP (As Previously Calculated)

* E = Evaluation Of Message Lengths And Quantity Compared
With What Would Be Right: (0< E<1)

Example steps to measure the MOP associated with group
Communication include:

Step 1: Store the time of initiation of messages (i.¢., anew plan
of a robot to send a message to another robot), the contents of
the messages, the time of transmission of the messages, the time
of reception of the messages, and the contents of the messages
as received by the receiving robot.

Step 2: The analyst, after the mission, calculates the Message
Initiation Ratio, Transmission Ratio, and Understanding Ratio.
The analyst judges the rightness of the message contents, as well
as the rightness of the understanding of the messages on the part
of the receiving robot, based on the robot’s subsequent behavior.
The analyst also judges the rightness of the message lengths and
quantity (too much or too few) of messages and scores this as
previously described.

Step 3: The analyst weights and combines the scores of the four
MOP associated with group Communications to calculate the
Communications Score, and weights and combines this score
with the other weighted metric scores to obtain a final value for



the group “IQ.”

Another example is a method for scoring the Effectiveness
metric for the individual robot. To score the accomplishment of
the tactical objectives and goal of a mission, the human
evaluator notes the number of objects (e.g., survivors in an urban
search and rescue operation) to be sensed or acted upon (e.g.,
located, given water or oxygen, carried to safety) by the robot
and divides by the total number of such objects in the scenario.
A similar ratio is taken for the number of positions (rendezvous
locations, assigned reconnaissance positions, etc.) the vehicle
should have visited. The Priority MOP is evaluated by
determine whether the priorities in the value-driven logic were
followed as assigned, or modified according to the rules, through
the mission. For example, a score (e.g., 0 to 4) can be assigned
to each priority, then they are summed and averaged. For
Effectiveness we then have:

o1 R0 =X Y 00/ 0r
[4] R(P) = (i P)/ P:

4
[51 SPr) = ), Pr./4
i=1
Where [0< Pr:< 4]
Where:
* R(O;) = Object ratio (for goal or objectives)
* R(P;) = Position Ratio (for goal or objectives)
* S(Pr) = Priority Sum Average
* O; = The i* Object of Type j (For example, j=1=survivor;
Jj=2=mine; j=3=areas to be avoided; etc.)
* P, = The i* position (goal or objective) Visited
* m = Total Types of Objects Sensed or Acted Upon (Or Total
Position Visited)
* n = Total Objects Of Each Type Sensed Or Acted Upon
* Oy = Total Number Of Objects Robot Should Interact With To
Achieve Goal Or Objectives
* P; = Total Number Of Positions (Goal Or Objectives)
* Pr, = Stealth
* Pr, = Survival
* Pr, = Timeliness
* Pr, = Energy

The steps to measuring robot “Effectiveness” are:

Step 1: Specify the tactical plan for the mission. In an urban
search and rescue mission, for example, this might be to: Search
for a specified object or person; perform Reconnaissance (to
search for entrances or signs of life); perform Surveillance (in a
specified region); Map (a specified region); Retrieve a person,
etc. If the mission goal for a group of two robots were to locate
and retrieve survivors from within a room on an upper floor, the

mission goal of one of the robots might be to locate a path to the
upper floor by searching a lower floor. The mission-level goal
consists, for example, of a state-graph defining a sequence of
potential commands that the mission executor will issue to the
group level planner. Store the robot’s mission goal as specified
at the start of the mission, and any changes of the goal made
during the mission, with the time of the changes.

Step 2: Store the robot’s input tactical commands for
decomposed intermediate objectives (if they are changed during
the mission, store the changes along with the times of the
changes), then store the changes in the state-graph which
indicate that a robot’s input command has been accomplished by
the robot, and note the time of the accomplishment.

Step 3: Determines whether the robot has substantially
accomplished its mission goal. Calculate the score quantitatively
¢.g., using an Object Ratio or Position Ratio (for example, the
ratio of entrances to a collapsed building located to the total
number of entrances in the building) or qualitatively (assign a
score to the mission).

Step 4: The Object Ratio and Position Ratio are used by the
analyst to calculate the Objective Score, summing the number of
objects or positions that the robot interacted with in the
accomplishment of its intermediate objectives and dividing by
the total number of such objects or positions with which it
should have interacted (according to ground-truth).

Step 5: The values used in the value-driven route planner,
such as for stealth, survival, timeliness, and energy, should be
stored for retrieval by the analyst. At the conclusion of the
mission, the analyst calculates the Priority Sum Average by
evaluating the behavior the vehicle, assigning a scores, and
taking an average.

Step 6: The analyst weights and combines the scores of the
three MOP associated with vehicle Effectiveness (i.e., Goals,
Objectives, and Priorities) and calculates a total score for
“Effectiveness.”
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Machine Intelligence Ranking

Paul P. Wang
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ABSTRACT

This talk addresses a number of issues which were
inspired by the draft of a document on Metric for
Intelligence of Constructed Systems. The
constructed systems here literally mean an
autonomous control system. It is important to note
the opinions expressed in this talk reflect the
thoughts of the author and they do not reflect on
any institution, organization or professional
society.

There are six issues being raised in thistalk. The
first issue deals with the discussion on the role
NIST should play. The ingtitution of NIST was
chartered to serve American citizens to improve
their well being and the noble goa of pursuing a
life of happiness. One of the most important tasks
IS to measure, standardize, and rank the
engineering systems and the advancement of the
technology objectively. The autonomous
constructed systems were singled out with a high
profile to reflect their importance. Are there any
other man-made systems which are equally or
more important?

Second issue has to do with measuring
intelligence. We are measuring intelligence
because technology embraces intelligence giving
us a superior and high performance system. On the
other hand, it is not NIST's mission to do all that
because it is there! The fundamental issue,
however, is to serve the citizens better via
improved technology which requires intelligence.
The definition of intelligence, however, is no
simple matter, as well as the definition of serving
citizens. Both cover awide spectrum of needs and
desirable things other than autonomous systems of
which intelligence so happen needed to be put in
the center of the stage.

The third issue to be raised is the definition of
"machine intelligence" and how to measure it?
Since the definition of human intelligence is
complex and difficult, the definition of machine
intelligence is even more difficult!

The fourth issue has to do with the performance
evauation of engineering systems. This issue
deals with value judgement. The debate by the
citizens among al walks of life and society as a
whole must be carried out in order to establish
value judgement as a benchmark for measurement,
testing, and evaluations.

This brings us to the issue of testing and
measuring. The central issue is how are we to
conduct the machine intelligence test? It is not a
smple matter because we have not yet settled the
definition of machine intelligence!

Equally important is the issue of understanding the
crux of our present technology and forecasting of
future technology. The reason is due to the fact
that there is absolutely no unique way to redize a
high performance system. Here we are talking
about a federal institution to set the standard to
evauate and rank a high performance system.
Generally speaking, the position this paper takesis
that some of the issues raised in white papers are
over simplified. Some of the long term frame
works have not been covered adequately. If one
believes in the basic assumptions, hypotheses set
by the white paper and willing to live with all the
constraints already being laid out, then this paper
has no validity. The feeling of this author is that
the constraints dealing with intelligent machines
are overly constrained and a liberation effort
hence is needed.



The main concerns are: the basic charter of the
Institution is unclear, the science on intelligence is
too complex, the need of application areas is too
complex, and the technologies available are too
uncertain to reach a consensus.

With these congtraints, | must say that the white
paper is truly an outstanding document full of
creativity, imagination, and innovative ideas.
Congratulations to Alex Meystel and Jm Albus.






Survivability and Competence
as Measures of Intelligent Systems

Reid Smmons
Robotics | nstitute
Carnegie Méellon University

While the workshop is appropriately
named "Measuring the Performance of
Intelligent Systems’, there may be come
confusion that the god is actudly about
measuring the intelligence of systems
While messuring performance is aworthy,
dbet difficult god, | believe that trying to
measure intdligence itsAlf is misplaced.
To me, it seems pointless to debate
whether, for indance, playing chess
exhibits more "intdligence’ than exploring
Mars, or whether usng speech is
inherently more intdligent than doing
object recognition. From both pragmatic
and philosophica viewpoints, the more
that we can make it clear that we are
interested in performance, rather than
intelligence, per se, the better off we will
be.

So, what criteria are to be used for
measuring the performance of inteligent
sysgems? | think that the two most
important characterigics are survivability
and competence. By survivability, |
mean the ability of a system to cope with
diversity in the environment, as wdl as
internal faults (hardware and software).
By competence, | mean the ability of a
sysem to successfully perform tasks.
Both survivability and competence can be
measured ether empiricdly or formaly.
Empiricaly, aurvivebility can  be
measured by caefully  contralling
environmenta inputs and by modifying the
internal state of the system (such as by
ddiberatdly causng hardware faults).
Formaly, with the right model one can

quantify the range of environmentd
conditions and interna states that can be
handled successfully.  Similarly, one can
measure competence either empiricaly or
formdly by contralling for the range of
tasks and the environments under which
those tasks are to be performed.

This, of course, begs the question as to
how to st up the experiments in an
unbiased and controlled fashion, and how
to mode tasks and environments so that
fooma  evdudions ae posshle
Unfortunately, | do not have good
answers for those quedtions, at this time
(athough we are working on it!). The
problem is that mog intdligent sysems
exhibit chaotic behavior - smal deviations
in input conditions lead to wide deviation
of behavior (of course, many intdligent
systems are aso chaotic in the colloquid
sense, but that is another matter...). Thus,
it is very difficult to st up "the same"
conditions to test different sysems. One
can never be sure if the results are due to
actud differences between the systems
themselves, or due to smal differences in
the environments.  While smulation can
be used to peform sandardized
expaiments, gmulators  have  the
disadvantage that they tend to be rather
smple models of redity, and so may not
capture the essence of what makes
survivability and competence difficult.

What about things like robot competitions
and Turing tests? | am dl for them, but
not as quanttative measures of



performance, snce they suffer from the
problem of variability, as described
above. The reason that they are vaduable
is that they come close to standardizing
tasks and environments in redigic
settings, and s0 can be used by
developers of inteligent sysems to gauge
progress, in quditative ways, agang the
date of the at. While it is dangerous to
use the results of such competitions to
conclude anything about one system vs.
another (especidly one technology vs.
another, such as neura nets vs. expert
sysems), competitions are useful as a
type of "bread-boarding” exercise.

Findly, an important agpect of intelligence
is adaptability. The question is whether
adaptability should (or can) be measured
independently  from  survivability and
competence. | would argue that
adeptability is merdy one way of
increedng a sysem's survivability and

competence, and thus should not be
consdered independently.  While it may
turn out to be true that adaptable systems
ae gengdly more survivable and
competent, it seems clear to me thet thisis
a hypothess that needs to be
demongrated empiricdly, or proved
formdly. In the absence of such proof, it
seems to make little sense to measure
adaptability in isolation.

In summary, survivability and competence
are two criticdly important characterigtics
of intdligent sysems. While it is posshble
to devise ways of measuring both, in a
rigorous fashion, it is difficult due to the
fact that autonomous systems interacting
with complex environments tend to be
chaotic. But, that fact should not lessen
ou rexolve to try and measure
performance - it only serves to make us
aware of the limitations and difficulties of
the enterprise.



Two measuresfor the" intelligence" of human-interactive
robotsin contestsand in thereal world: expressiveness and
per ceptiveness

Illah R. Nourbakhsh
The Robotics I nstitute
Carnegie Méllon University

Practical measures of intelligence are generally predicated on

a social-anthropocentric view of intelligence. This is hardly

surprising, but is undesirable because it results in intelligence
testing procedures that are uninformative when the subject is

not human. For example, the classical Turing Test measures

machine intelligence using the yardstick of human social

dialogue, in written form, as its gold standard. The problem is

that such methodology is implicitly pass fail. Rather than

providing a relative measure for machines that are clearly

inferior to humans at social human interaction, this test simply

fails all such machines until and unless some superior machine
simply passes. In airness, it is possible to mitigate this to a
small degree by narrowing the content area of the test.

Nevertheless, the Turing Test as applied to the mobile robot
system suffers generally the same fate. One can imagine, for
instance, arobot Turing Test in which the human tel eoperated
robot is compared in performance to an autonomous robot in
tasks such as navigation, manipulation and robot-human
interaction. But the robot will continue to suffer because its
raw percepts and raw effectors are not comparable to that of a
human. The solution, to force the teleoperating human to use
the same percepts as the robot itself uses, results in a robot
that whether teleoperated or not is disappointingly
unintelligent even when it successfully passes such a robot
Turing Test. The problem, then, is that a robot's potential for
interaction imposes an upper bound on its potential for
intelligence.

Based on this premise, | will propose in my talk that the form
of intelligence about which we care most in the case of
autonomous robots is interaction.

I will present a methodology for measuring the potential of a
robot to engage in rich interaction, thereby establishing a
behavioral and analytical way of measuring intelligence
without reverting to a direct anthropocentric pass fail test. |
will define the concepts of expressiveness and perceptiveness,
which together place both upper bounds and lower bounds on
interactivity and thereby intelligence. Expressiveness is a
measure of the output richness of an electromechanical
system. One can quantify expressiveness in terms of the
average effectory branching factor of an agent in its
observable output space.

Perceptiveness is a measure of the fidelity of an
electromechanical  system's effective  mapping from
environmental change to output. This too can be quantified by
computing the set of possible output tragjectories of an agent in
its perceptual workspace. These two measures prove to be
particularly useful because they contain no bias with respect to
behavior-based and model-based robot architectures. After
defining expressiveness and perceptiveness, | provide some
quantitative results comparing the expressiveness and
perceptiveness of a simple unicellular organism, the
dinoflagellate, to that of several popular mobile robots. These
guantitative results demonstrate that from the perspective of
interactivity mobile robots have a long way to go before
challenging human intelligence.
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